
JOURNAL OF NORTHEASTERN UNIVERSITY

Volume 25 Issue 04, 2022 ISSN: 1005-3026 https://dbdxxb.cn/ Original Research Paper

Submitted: 17/10/2022 Accepted: 16/11/2022

963

PERFORMANCE EVALUATION OF HASH FUNCTION USING NEW
DECENTRALIZED BLOCKCHAIN-BASED SECURE KEYLESS HASH

ALGORITHM

Bhagvant Ram Ambedkar
Research Scholar, Department of Computer Science and Engineering, Shri Venkateshwara

University, Amroha, Uttar Pradesh, India Email: brambedkar@mjpru.ac.in

Pawan Kumar Bharti and Akhtar Husain
Department of Computer Science and Engineering, Shri Venkateshwara University, Amroha,

Uttar Pradesh, India Department of CS&IT, MJP Rohilkhand University, Bareilly, Uttar
Pradesh, India, Email: padutt, husainakhtar@gmail.com

Abstract— Nowadays, the implementation of advanced technology is using the principle of
blockchain technology to secure the data communication of social media through the public
network. However, each user wants to secure data communication and modern secure
technique to protect their data. The integrity, confidentiality, and digital signatures are verified
by secure hash algorithms (SHA). The hash code is generated from a variable length input
message by a hash function that is processed by SHA. Several researchers have proposed many
hash algorithms that used additive keys constant and initial value as the basic parameter of the
cryptographic hash function. These key constants for all input messages are openly known and
these are constant for any variable length input message. In this research, we are eliminating
the key concept of the cryptographic hash function by using the decentralization principle of
the blockchain. So that the design and implementation of a new decentralized blockchain-based
secure keyless hash algorithm (NDBCKSHA) to evaluate the performance of the hash function
by generating 384-bit fixed-length hash code and comparing its analytical analysis and
experimental results in python 3.9.5 programming language.
Index Terms— blockchain implementation model, hash function, how to verify the data
communication through the public network, key constants, security issues with SHA

Introduction
This research is introduced to implement the keyless hash algorithm based on a decentralization
principle blockchain. By using it we are eliminating the key concept of cryptographic hash
algorithms. The cryptographic hash algorithms are using one-way keys to map the fixed-size
hash codes. Many existing cryptographic hash algorithms are using a centralized hash function
and one-way additive keys for the generation of hash code. Therefore we are using the
decentralization principle of blockchain technology and implementing a hash algorithm
NDBCKSHA-384 and which used a normal register to hold hash value. The function process
of NDBCKSHA-384 is computed in four phases of function processing based on the
decentralization principle of blockchain technology [1]. Decentralization means that the
mapping of hash code is not processed by the single or centralized hash function. The

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

964

cryptographic hash function algorithms use the additive key constant and initial value as a basic
parameter and it holds in the buffer registers [2]. The cryptographic hash function in the
blockchain is a way to secure the message block by decentralization of function processing. In
the blockchain, each block contains its block hash code and a hash code of its previous block.
The modernization of technologies and the development of blockchain-based hash algorithms
are support for development to protect the integrity of digital data and password storage. The
double blockchain-based model to secure data storage and data communication through the
public network and the need for an accurate security mechanism to avoid dangerous attacks
[3]. Such a blockchain-based technique is very useful for generating hash codes to verify the
integrity of data transmitted over the public network [4]. The hash function is used to protect
web information from unauthorized users and to check information during transmission [5].
Hash algorithms are provided to use fixed-length pseudorandom bits that are presenting
adequate entropy [6]. Hashing algorithms produce fixed-length code from variable-length input
messages [7]. In this proposed algorithm, we are using fifty-five step processes in each round
to generate 512-bit fixed-length hash code which is independent of key constants, it is very
difficult to reconstruct the original message from the hash code because in this algorithm we
are not using any openly known keyword.
The basic blockchain model of NDBCKSHA-384 is shown in Fig. 1.

Basic Blockchain Model of NDBCKSHA-384

 Each block of the input blockchain is directly connected to the process of the hash function
and maps the hash code from the input blockchain [8]. The hashing algorithms implement to
secure the integrity of the digital signature and continuously increase the computing power that

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

965

attackers have at their throwing away [9]. The efficient characteristics are recently drawn by
fault and enhanced hash security by the principle of blockchain technology [10]. The avoiding
use of basic parameters is based on the cryptographic hash key used by the hash function [11].
Hash code 256 bit generated by proposed hash algorithms that enhance the processing of hash
function by elimination of key constant and initial value as a basic parameter [12]. In this
algorithm, we expand the variable length input message into the size of block 4096 bits by
appending zero bits with one-time padding after the message bit. The expanded block is divided
into 32 sub-block and the size of each block has 128-bits. The designed and implemented hash
function generates the 384-bit hash code from the input blockchain and is used to verify the
integrity and confidentiality of digital information. Verification of digital information is very
difficult because it is varying between 0 and 1. The implementation of a hash algorithm based
on a secure keyless blockchain is compression and expansion-based secure hash algorithms,
that are generating the secure hash code [13]. The hash function confirmed the authenticity of
the message during communication between the sender to the receiver. The security strength
of the hash function can be increased by the circular shift operation. In this implementation of
the hash function, we are using a left circular shifts operation with a hash function enhancing
the performance of hash values [7]. The hash function has used a set of logical and arithmetical
operations to generate a fixed-size hash code it was computed by SHA. It is used to verify the
integrity of digital signatures and passwords during information communication through the
public network. Design and Implementation of a hash function are required in case hashing
applications are in low power and efficient memory space [14]. The hash function is the main
center of SHA is provide high security and confidentiality to the user [15]. Therefore the hash
function is required for the improvement of hash algorithms to secure the integrity of user
information [16]. The principles of blockchain technology are very significant for verifying the
processing of data integrity [17]. By designing and implementing the hash function, we can
secure user information against an illegitimate person that can recreate the original message by
using openly known information and input variable [18]. The implementation of the hash
function has a big challenge in the case of the device having limited memory space [19]. The
SHA family is providing an updated version of the secure hash algorithms (SHA) [20]. The
properties of a “good” cryptographic hash function will satisfy all security requirements of the
hash function [21]. The limited memory-spaced-based devices have big issues because hash
algorithms have to provide security with an appropriate storage and processing capability [22].
The hash function is providing a big role to protect public network information from an
unsanctioned user and check information integrity during information transmission through the
public network [23]. Hash algorithms are providing users with fixed-length pseudorandom bits
that are presenting adequate entropy [24]. Hashing algorithms produce fixed length code from
variable length input messages and increase the security strength by left circular shift [25]. We
are proposing a keyless blockchain-based secure hash algorithm to produce 384-bit hash code
by designing and implementing the hash function. It is used low function processing time to
generate hash code from the input message. The implementation of the hash function, we are

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

966

using four function phases and it used fifty-seven steps in a single round to generate 384-bit
hash code in a fixed size. The generated hash code is satisfying all security requirements.

Application of Hash Function and Issues
Information technologies cause several issues with the security of public network assets that
require enhancing the performance of public networks with new methodologies [26]. A lot of
existing cryptographic hash algorithms are producing hash codes based on key constants. The
hash function used 64 key constants to produce a hash code by a new hash algorithm [16]. An
innovative secure algorithm is using six registers, each register has a 32-bit word length which
is used for the initial value to produce a 192-bit hash code [17]. The attacker can predict the
original message by using the key constant and initial value. Hashing for message
authentication is describing the single-key and double-key versions for security proof [18].
Hash functions are enhancing the security strength during message exchange through public
networks [19]. Hash algorithms have designed hash code by using higher-order two-variable
polynomial functions [20].

Basic of Hash Function
The hash function process is used logical and arithmetic operation and map the fixed-length
hash [21]. Faultless hash functions satisfy the property of security and require that the results
of applying the function to the enormous set of inputs blockchain and input variables that
produce outputs are matchlessly casual. The innocent hash function is required for safety to
satisfy all security requirements of the cryptographic hash function.
SHA Family
The National Institute of Standards and Technology (NIST) commercialized safe hash
algorithms, and the flaws in SHA were known as SHA-0 in 1993, these well-defined three new
variants of SHA, known as SHA-256, SHA-384, and SHA-512, are known as SHA-2 hashing
algorithms [13].

The main objective of the implementation of NDBCKSHA-384 is to avoid the use of basic
parameters are the initial value and additive key constant Kt of cryptographic hashing
algorithms.

Computation of Initial Value and Additive key Constant
Step1: Compute the square root value of the first eight prime number
Step2: Select the fractional part of step 1
Step3: Convert in hexadecimal value of step 2
Step4: compute the binary form of the square root of the first 16 prime numbers and select the
first 16 Hexa- decimal digit fractional parts of these square root prime numbers [8] first sixteen
prime numbers are hexadecimal values of step 3
Step5: Step four should be the Initial value or Initial vector or H0, as follows :

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

967

6A09E667F3BCC908 BB67AE854CAA73B 3C6EF372FE94F82B
A54FF53A5F1D36F1
570E527FADE682D1 9B05688C2B3E6C1F 1F83D9ABFB41BD6B
5BEDCD19137E2179
We are analyzing step 5, there are required buffer registers to hold the initial value and function
processing is processed in “n” steps and process of each step is using “n” additive constant key
Kt and these values are equal to the size of buffer register in bits of the fractional part of the
cube root of the first “n” prime numbers, which is constant for all input messages and these are
required some extra memory space. So we are concluding this step and seeing the security
strength of hashing algorithms is increasing by using these basic parameters. Many
cryptographic hash algorithms are used initial values and key constants as the one-way
cryptographic hash function.
Therefore we are implementing NDBCKSHA-384 based on the decentralization principle of
blockchain technology and holding its hash value in a normal register. Verifying the security
strength of the hash algorithms are required three basic properties one-way, weak collision
resistance, and strong collision resistance, hash satisfying the design and implementation of
good secure hash algorithms [13].
Padding
The padding is a technique used for expanding the input message bit in a constant fixed size of
blocks by appending zero or one bit. We are designing and implementing the keyless input
blockchain of 4096-bits with padding bits. The one-time padding is providing a very important
role in the hash function to implementation of secure hash algorithms. We are using one-time
padding for a large number of zeros with input messages to avoid, hash function issues. The
padding is appending zero followed by one bit [22]. The security strength of NDBCKSHA-384
is increased by one-time padding and the length of padding bits is computed by the following
relation:
Padding bits (P) = (3968 – M) mod 4096) where M is the variable length input message size
and also append 128 zeros with padding, which is L = 128 is the maximum input message size.

IMPLEMENTATION OF NDBCKSHA-384
The basic architecture of NDBCKSHA-384 is shown in Fig. 2. It shows the decentralization
function processing of the hash function. The following steps are required to implementation
of the NDBCKSHA-384 for producing 384-bit hash code:
1. Convert the variable-length input message (M) into bits
2. Maximum size of input message length (L) = 128 bits
3. If M ≤ L, use P to expand the input message
4. If M > L split M into the length of M ≤ L, use P to expand the input message
6. Append the length of padding bit (P) = (3968 – M) mod 4096 bits with M.
 7. Now the length expanded input block E = M + P + L = 4096 bits
8. Now E is divided into blockchains of thirty-two blocks (E0, E1, ………. E32), and the size
of each block has 128 bits.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

968

9. The hash function process is computed in four phases and the function processing of each
phase is shown in Fig. 3. This blockchain model is using four hash function process phases to
generate 384-bit hash code. First, we expand the variable length input message to a size of 4096
bits in fixed length. The expanded block is split into 32 sub-blocks chain and the size of each
sub-block is 128-bit applying the function process used by these sub-blocks chain. The function
process is computed in four phases as shown in Fig. 3.

Decentralized Hash Function Processing architecture of NDBCKSHA-384

Four Phases of Single-Round Function Processing of NDBCKSHA-384

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

969

The hash function processing is computed into four phases and holds computed results in the
hold normal register shown in Fig 3. In the first phase function map, the 128-bit fixed length
hash code. Description first phase is computed as follows:
N1 = (¬E0 * ¬E1) where: ¬ = inverse of given variable and * = product of input blocks
Ni = σ4 (¬Ni-1 * ¬ Ei), i = 2,3,..........15
 σi = left circular shift “i” bits block of Ni, i = 0, 1, ……….
In the second phase of function processing, we map the 256-bit hash code from the 128-bit
input blockchain. Description second phase is computed as follows:
N16 = σ4 (¬(N15 || E16) * ¬(E17 || E18)), Where || = Bitwise Join operation
Ni = σ4 (¬Ni-1 * ¬ (Ei+1 || Ei+2)), i = 17, 18,..............31
In the third phase function processing map the 384-bit hash code from the 256-bit blockchain.
Description third phase is computed as follows:
N26 = σ55 ((N1 || N2 || N3) (N4 || N5 || N6))
Ni = σ55 ((Ni-1 (Nj || Nj+1 || Nj+2)), where i = 27, …….., 34, and j = 7, ………, 23
Where = Exclusive-OR operation
The final fourth phase is to map 384-bit hash code from 384 input blockchain. Description
fourth phase is computed as follows:
 :
F1 = σ48 (N34 N26),
Fi = σ48 (Fi-1 Nj) Integer i = 2, …….,15 and integer j = 27, ……….,33
Final hash function
F = σ27 (F16 F1)
F = σ27 (F Fi) where i = 2, ………13
F = (F F14)
F = (F F15)
For example, the Variable length input message executed by python-3.9.5 programming
software is as follows:
Input Message = xyz
Length of input message in bits = 24
Length of input message in bits = 24
Length of Padding bit = 3944
Length of Input Block with Padding Bits= 4096
Length of Hash Code in Bits = 384
Hash code or Message Digest =
fa3abc1f790e67d5eea3a0d10c13093a9aa489f6a37e8c532427ddd958812a34c1c9193454ae81
5adbd1929c557f561c
Length of Hash Code in Hexadecimal Digit = 96
Elapsed time in second = 0.0005008999999915886

We are calculating the executed elapsed time by following syntax which is executed by python:
import timeit

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

970

start = timeit.timeit()
NDBCKSHA -384 python code
end = timeit.timeit()
print(“Elapsed time in second =”,end – start)

RESULT AND DISCUSSION
In this section, all the results and the discussions should be made. Performance of
NDBCKSHA-384 based on security requirement condition.
Security Requirements Condition: Our proposed algorithm is satisfying the resistance
properties of various data integrity and security requirements [7]. These are mainly three types
of security requirements as follows:
Preimage Resistance: The limitation of preimage is the maximum length of work < 2n , for the
length of hash code n=384 bit, 384 is preimage resistance
Collision Resistance: the work is < 2n/2 for hash code 384 bit: 192 bits of collision resistance
[27].

Input Message = x
Length of input message in bits = 8
Length of input message in bits = 8
Length of Padding bit = 3960
Length of Input Block with Padding Bits= 4096
Length of Hash Code in Bits = 384
Hash code or Message Digest =
5ab163861182e1b07486768a8f3c8f639119330e04d5992aef392ae5535a63ba846f9d6af0d99a
f8938b8ebebb0bac1f
Length of Hash Code in Hexadecimal Digit = 96
Elapsed time in second = 0.00040919999997868217

The input message is the preimage of the hash code.

Collision Resistance:
Input Message = y
Length of input message in bits = 8
Length of input message in bits = 8
Length of Padding bit = 3960
Length of Input Block with Padding Bits= 4096
Length of Hash Code in Bits = 384
Hash code or Message Digest =
6d35fed231ba85b59f9ced62ffcabb70f275d187daf1d5ae1a9318f0b30c1418ab86fb0033595ab
1456c7ff352cc8a91
Length of Hash Code in Hexadecimal Digit = 96

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

971

Elapsed time in second = 0.0008744000000433516
As shown in the above-executed example hash code H (x) ≠ H (y), so it is collision-resistant.

Second Preimage: Therefore, it is impossible to find the message (x, y) which has the same
hash code H(x) = H(y).
For example, we are taking 3552 bits of the input message split into blockchain lengths of ≤
128 bits and producing 384 bits hash code of each block and final hash code as follows:
Input Message = “the implementation of advanced technology is using the blockchain model
to secure the data communication of social media through the public network. However, each
user wants to secure data communication and modern secure technique to protect their data.
The hash code is generated from a variable length input message by a hash function that is
processed by SHA. A lot of researchers have proposed many hash algorithms that used keys
constantly”
The total length of the input message = 3552 bits
All security requirements of the hash function are satisfied by executed results shown in Table
I and Table II

Experimental Results of Internal Blockchain of Input Message length of 3552 Bits
Block Chain of Int
ernal Hash Code

Total No. of 1’s
in Hash Code

384-bit Hash code of internal blocks in Hexa-decimal digit

H1 208 fced144bbf1fbff2b93951d33b8d10d05ccd105fec072229971da0d
ebceb33e05f95e7d5da8e336c9c7ba150c2bfb8ce

H2 182 5139894c1c6a382caec19f26568a077b34451db9f42566b4086309
496b61548ca55033b76b9bec4ba9e1b8eb5a4097ba

H3 188 670df993e43471c21b0481d3816a484774db3ec5de4ee23bce604a
c4fbcb0e0d8239fc8ce0b1f7ecabf2134d2940ea2a

H4 182 94d803dfe00aad0a6ca7c5117908ea7bd50c4c50f73032d5909d79
dc9dd2b2bad11015df7b344c04cd8c8acf387b04d

H5 192 c49bd55d0cbe25f617f6af51c1069b43312383272ab6ea0ef594ffe7
21289d9a1c0353bcc59894ee2efab2292854b4c5

H6 198 519fd80a37295d1a3764fccfb1e01a9337e6f8f383f85d45cc742a53
1971f141fbe2c327fbf0792260f380c7d948b1ae

H7 184 dca95fd23e47c35d435ec2a2916dd8e5ec8e76e58f492107231d798
0cb08529d0de1eeb3cb03280a1c02d1576ac81736

H8 176 d2852f4ec26e65ef455c6617a4bb856d822500508ca331af86c06f8
a750b8bd25268251074007f1f21226e49d2575d1e

H9 198 b5accf0e71275944872c17fa178237059e51860ffa0807bd90d7dbd
6dedaaa50ff02b79f20c729d4aa71254a2ac02d18

H10 192 7ec9204fbbc5f074cfb110940133c432521974612198a94f0a21bdc
d4afb70f9a86efa3f3dad76c02c375bbd35b6b0c9

H11 190 30d44d5da98b8a032a52c2ed7c9ce5903819bf9c6aacbae7686626
ddc8c4d639ffae0abb098e7c04a24c781f1736dc8a

H12 186 1537f2a48aaf3a8082f0f8390a245098ae96f51e67315ab3abe48d6
243296bd1bbc7496a746fa9035c46d4c8b873ec38

H13 180 2dfd391831ebf3d5af6cd9e841a05804be940ed58c1458b4909426
364bc53e2aaae0c4c18f5333ca279abde133310232

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

972

H14 196 48bcbc194a9cc35d25c7e971e27c8e4edbcb373d8f489e06eae8692
bcd06510fa9369b56fff48806ee24bcd01bf82c31

H15 194 82ccf8eb405e4f2668e16963e7738edb417b25c700564259187d6a
4f7dfbad83ca8dc1217854512257d0daf8aee30f9f

H16 178 4816c72b5d80d1d293851d5c03783c4873915dd8049e67201c335
063070217fc1a4c3361de2c2a1ec933df76b3ce8a4f

H17 198 7945d54d3b4eb07b9b4fce642bca3a14fa7891acf587ed6f70ac653
14a054b299c25e59c1ec121bf9dded53455743895

H18 198 81a6cfdfa728fb37ea9975851c46a0876ed78312c56c1f755f1a59cd
80b9eba2d1abe3bef45c8166b2a128191c71e277

H19 194 c08bf34c8f4f79cd6db7c25ea918e2c6cbec8deb32b2c8449aa4c1ea
9227ae18c69e59298ff0a81e3df88b2fa9d46a11

H20 210 a26d98f11f94db9d3759f588deef256234bbd9fc34a2bce6d3b50ed
bbc0f2c566ae9d7f1f3108bb2611630326ff8ede9

H21 194 9af802346182ddeca7a748839447a04adba6ebcd5c5964ea301ecd5
c03b216a91d8ed8f83db2e92710dabf4a975ddfd3

H22 184 a0ff5791132b35a761ae5349f34a622214fc3c31eccea934a0d78ca8
f49020a9703bd47e41aa249eee2a9f8b6611a586

H23 204 267968ba711ceaff9061dc16b08b5b5d3bea1958011f4d7faddd43f
c0326f1f68291cbf829e38abe0799bf364b5c9daf

H24 204 7b6fa3dd53b147e332fd59e307b43f4fbd51779d00b1a632ced8fdc
3b47f7be2052547e68f414b51d5068113259a37a5

H25 192 4eceb760bb9ba10b27269b4df714e63fea2280a7c80c80a32ad9c86
aad52697d6e715292ceee6f1f2a28949e19ea9556

H26 202 28bb5d89ab4b26ef2e654bde444fa37ad7ef69c707146cdaa4ec40b
fc1e762a3f1274a92c39485ecfbe0d1d33d48c3da

H27 172 93e9f24f5f404e29d6b418b2145552f083443b0a11442110a6a370a
b8aed407a17351aa5eb17b1201a4e8d3056fae916

H28

Final Hash
Code

184 56b207c4066811ab8595c1eff1d08973f2717a24e53344d57b650f5
41b02c19c55212abe559661db5582c107fdae1e39

For a map of the n-bit size of the hash code, the length of the input message will be < 2n to
prevent the preimage and second preimage attacks. The brute-force attack is to pick values of
x at random and try each value until a collision occurs. For an n-bit hash value, the level of
effort is proportional to 2n and it tries, on average, 2n-1 values of x to find one that generates
a given hash value h [28].
For a collision-resistant attack, the length of the input message can’t exceed 2n/2. If we take
the random variables in the range 0 through M - 1, then the probability that a repeated element
is encountered exceeds 0.5 after √M choices have been made. Thus, for an n-bit hash value, if
we pick a block of input message at random, we can expect to find two data blocks. If collision
resistance is required then the value 2n/2 determines the strength of the hash code against brute-
force attacks with an identical hash value within √(2^m) = √(2^(m/2)) attempts [28].
The above security requirements are satisfying our proposed algorithm so our proposed
algorithm is secure and time efficient because it takes to order one complexity O(1) during all

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

973

phases of function processing. The comparative analysis hash algorithms based on basic
parameters and NDBCKSHA-384 are shown in Table II.

Comparison with Basic Parameters of Hash Algorithms with NDBCKSHA-384
Hash Function

Hash

Code in
Bits

Input
Block
Size in

Bits

Security Requirement Hash
Function

Processing
Steps in
Single
Round

Reference

Preimage
and Second
Preimage in

Bits

Collision
Resistance

in Bits

MD5 128 384 128 64 64

 [13, 24, and
29]

SHA-0 160 384 160 80 80
SHA-1 160 384 160 80 80

SHA-224 224 224 224 112 64
SHA-256 256 256 256 128 80
SHA-384 384 384 384 192 80

AIVPSHA64 64 2048 64 32 31 [11]

AIVPSHA
256

256 2048 256 128 22 [12]

NDBCKSHA-
384

384 4096 384 192 65 NDBCKSH
A-384

The experimental results of NDBCKSHA-384 and hashing algorithms are shown in Table I,
which we are using for the execution of Python-3.9.5 programing language, on Windows 10,
64-bit Operating system, 4GB RAM platform, Intel® processor. Statistical testing for executed
results of NDBCKSHA-384 with input variable length is as follows:

Statistical Testing of NDBCKSHA 384
Frequency (Mono-bits) Test: The focus of the test is the proportion of zeroes and ones for the
entire sequence. The purpose of this test is to determine whether the number of ones and zeros
in a sequence is approximately the same as would be expected for a truly random sequence.
The test assesses the closeness of the fraction of ones to ½, that is, the number of ones and
zeroes in a sequence should be about the same. All subsequent tests depend on the passing of
this test [29]. Aims to determine the relationship between zeros and ones in a binary sequence
of a certain length. For a truly random binary sequence, the number of zeros and ones is almost
the same. The test estimates how close the unit is to 0.5 and the generators of "random"
sequences, that is, with a high probability to confirm whether the generated sequence is
statistically secure [28].

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

974

Frequency (Mono-Bit) Test of Internal Blockchain of Input Message

The order of testing of the randomness of the proposed algorithm is based on a frequency
(mono-bit) shown in Table III.

Frequency (Mono-Bits) Test of NDBCKSHA 384
Length of Input
Message

Hash Code Total No. 1s in
hash code

168 afabef988fea49837c58a6491cefc1a21a47d3
ee00a996401c19172dc7e9e0a8c8ba61922d32
fa2cc2b7afb601f7a5c7

192

7664 9792eb4e401a18cdf6aed8eafd4b83a529bf33
a67a30308ef3d615dd9bcbe77ae6a4932a60e9
c3f98c224ccec04ceb20

196

480 f511e672bd738f9d6f5470348cf8ccf0fbb052
34dc79d0ed4fadaad5a98bb6fd3acd290185dc
8554ead4a1c94be6e633

204

1712 26dacb2b09f7972cff4dd550cea45ceeb8da51
39375b39394eb635977eeaa38f3f472827e7f6
5e64ca93cde8b52693b8

212

232 4fbb762d5fb4988d5cf0367a5132d093f26869
dbec3c952c6c3ff3c704dcd8efcb28ca68b83e
efb4cb38ae5befc9815f

210

48 58f69cb0f414f66e8b0e93fe053f2e8014051b
7a2f5b344e25fe69d492bd9d20268cadd48707
29e9c8960653159357ba

188

80 68e6f5073cfcb14f115abaae13f0bc24d48f3d
2952dab720f98daa99902a5407aea017c8cc4f
50db77eb7d0b5c9533a7

196

80 e2d42b90635eb0f3730edfc5bc75125383739c
13d6dd27be4cca6a2dba746166d98cfea0fd55
5bf1ea1346aa5638cb7a

204

80 13a63e7198b014ff8e450715c37d3f61548adb
50ee45f97a897742f08ae6f34b779106896cfd
7e0423d9f4f45d57ebb3

202

767 ca31f9a3c6149bdceb6520d037b450401accfe
ed0ad0a5a7bf196677dcf9312b1d356d08566e
373df877f88fa02bf561

200

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

975

8 b0fea11112b9e5c47a52c39925a1bc5186fe8d
74e8d179c6ed698b8b9d44026fa2d3aefa1753
5c668ca78c600122e2c9

186

120 2129c0c490cc1d292f45fbe717f681c679b97b
b98e3909d37ea00787c69194a088572603f157
fb5674f9727f3cd5e882

192

96 15ccc9b6b9da989513bc45d0eb6f7b1b5f3a9b
a9b5987ee983495e203397249d9edf07b0a0d3
0909f275a55350684fa6

196

104 59cd6b288ea38871c7f9dc57068ad25c8e7391
79a0edcf954e75d4f36294503458306ff1fae9
b20aad0fcda2d413b881

192

104 71e82162ccc170dd2cd74d2c239acdf462c427
c6feac3b8d51b3096b3be182d4a5cae99cb3e2
0d8c07e52fd71f5c578

192

152 e08ebbe118a2f2aa598dcedb32fdb2269c6a47
1eace440fa95eff713a37aa182f76a94df56f8
8d3dad7d8eb88fed1f9b

212

Frequency (Mono-Bit) Test of NDBCKSHA 384 with Variable Length Input Message

Sensitivity Analysis Test: The sensitivity of the hash function by comparing the effects of seven
variants to the input message, which means that a small change in its input message will
generate a considerable change in the hash value [29].

For example, we are computing the small change in the input message “abc” and find the
change bits compared with the hash value for “abc”
Structure 1
Change (C1): abc
Change (C2): “abc#”.
Change (C3): “aec”.
Change (C4): “ABC”
Change (C5): “7abc”
Change (C6): “Abc”
Change (C7): “aBc”

Structure 2

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

976

Change (C1): efg
Change (C2): “efg#”.
Change (C3): “edg”.
Change (C4): “EFG”
Change (C5): “7efg”
Change (C6): “Efg”
Change (C7): “eFg”

Structure 3
Change (C1): hij
Change (C2): “hij#”.
Change (C3): “hfj”.
Change (C4): “HIJ”
Change (C5): “7hij”
Change (C6): “Hij”
Change (C7): “hIj”

Structure 4
Change (C1): klm
Change (C2): “klm#”.
Change (C3): “kxm”.
Change (C4): “KLM”
Change (C5): “7klm”
Change (C6): “Klm”
Change (C7): “kLm”

The resulting hash values are listed in hexadecimal format for all cases, followed by the number
of changed bits compared with the hash value for C1. The experimental comparative result of
statistical testing of the frequency (mono-bit) test and sensitivity test are shown in Table IV.

Statistical Testing of NDBCKSHA 384
Input Message Hash Code Change Bit Total No. of 1’s
Structure 1
C1 fca788de40730b709bdb77a20f263103d9

65659fe987789223728ec6a492a13edb95
c761f391bf5e89c15a075388c28b

---------- 192

C2 c36f8e10b0a7af1b1323da777a31ebf95e
f619121c459f61a8c3331c66c134e3dbff
4f8ede1bc2319a0a90643d15fd34

214 198

C3 1ffedc12e2fe824c824aa4db73f34fd32c
003c12b47b5775bdbaa6adf7b2e75dc96b
fc7c0950cf1f74e1a50d20312f7b

202 206

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

977

C4 4c485877ef1acc41d50467842b05f1a819
bf306501798dd5980fca89898025a87c0d
f65056cfbab567ce27f6bb207524

202 182

C5 3b78e62b70a0e08883a4113a33c8c8b18d
9e6f3c0f53a4ebb60896d7b0fa52ec9ad7
47e4fe4593a1766860d270e96fbb

200 192

C6 7ff0621a05f38bcde8cb028ad820b4ef86
adf4e46f82e80c96240b66ddf536f63fa1
0a398389b664542922fb4a3e3345

182 188

C7 ab461b74c47407f026a855185e3edf68a7
2db5cad66b3102bdc7e94345c74620855d
b7a8afc96757b31ca07fab83bc72

194 196

Structure 2
C1 b14378c9659e3396b02a3f0e26f59e67a7

4e0f00b498a63ad41d267f823cc7846ee5
c247c73a7fe3f4221e16f51dd9eb

----- 198

C2 2d016607854a97fd38d292db53e2449d20
dd738d415a41c95fac8be4543c4e6bf7ae
cba9eab0028ce7e9d4749e94b734

208 192

C3 1f893cf7c9f6835ebbfc1935c2c5928900
ba8205e76662a3ddf640ccb1b59891886c
89cf56d73263678fe06666c655f6

190 194

C4 8bb4a870caf7f4a7fef52f2802d65ecc67
945afa5c66537d6f606230af2e4312c97d
f37662647a081a2d62e209e40ee7

204 196

C5 92b409972eca7e686d93508719e34e4f08
731bb141c8dfc7c5866cb394fff8e3abfb
e3eab22cc4018a8f5103f11c0ed7

204 194

C6 3214920d201eb32bc33a4a26f1f31b8bf8
869e7b329d36a4614ba3dffb5b504c8ad1
0f1fb72276d929ca66eaecab2825

182 192

C7 eeb2fb63e1993f160d591db477ed700cd9
06df558b74efaa4aa841fa6369209a302d
b28e9b62a
7eaceffe56a1d578690

196 202

Structure 3
C1 65417c03eeba844d49cc28ca3e80e0636a

89238bd701f6f0f9997fbfca18201f1001
05ac860183af2cd62c6427336c5f

---------- 176

C2 5a897acd1e6e2026c13485176b153395fd
5adf8622c311037228c265006b37cb1c7b
cdc32b8bfec03f1de60749ae53e0

220 186

C3 7deb5411fd95ce517f013e2905564fb324
ba8e13c506cb7340fce59a5f38024a9b5a
92933b75c5ec9f412e3c1be4351b

182 194

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

978

C4 a1effdaac1d3437c07122db94fd19b6233
5266713fff03b742e4b9f8c79a658dbf91
349d235f8644c2d958a934756f7f

192 206

C5 cbef9cf57703ab2b0984213058825a75b1
ad6aea3f260d33b253b2d52f2747514bde
f616cff33da95215e3445af8569

204 196

C6 a69616c7ab3a04f03adc5de2e986658f35
41b2f05104666e4ccf781793ef76d3fc3d
c8f4f6198a95f13e5cb8bc8c9181

192 196

C7 2af07f296abd88cdf4be1e212aab942085
d0f3dee8edbf60672c183a2b4dc7014ec9
7565da595ba6160bd710effb3a28

190 196

Structure 4
C1 d6f215f53c534e3e5a2ff7a81df1c3fdcb

b6b146d8b9c62c97da5fd590a7554dd3ea
d333ba3b1fe4fa8fb00e57f4ecb8

---------- 218

C2 119c9222dc87ea55d2d75a6c2df24a3eee
acdcdb2d7b21df1c6bf24e5ec65ab95e91
1b5c17b1628be9447a6daa24e7c4

206 202

C3 eb94464d2681a9ee133202207618b145fb
7b4366e0b26bd6cb5621a24a2bd2509711
714637cde8e140ba33faaaceefea

200 186

C4 de9dd45c933a890f15e5a38e1e3e8275a3
ecf5bc3047336b2ca61f8afc9453d36462
e2021f651a0f149199beb932d224

194 190

C5 5ded687b7eca46dbad772736a58aa47f5b
e938c0d40a0f4f78311f75676b89e081f9
f6d14b7ff6d3c5949d8ad4922fdf

194 212

C6 54a5ff3179d3ce83283b92c1eb754e0184
7e203d5ebc56b2228dde65a8e1408d27ce
1e6bca2316de277789f65c5a3df7

176 198

C7 1812965fb85442bee74d80471bc2973f25
ef6113e7558fbc096f385071f2b2538d22
a3fae663c7edc0535f23fa8d29eb

192 198

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

979

Sensitivity Test of NDBCKSHA 384 with Small Change Structure of Input Message and
Compared with Hash Value C1

Sensitivity and Frequency(Mono-Bit) Testing of Hashing Algorithms
Hash
Algorithms

Input Message Hash Code Change Bit Total No.
of 1’s

Structure 1
SHA384 C1 cb00753f45a35e8bb5a03d699

ac65007272c32ab0eded1631a
8b605a43ff5bed8086072ba1e
7cc2358baeca134c825a7

---------- 185

SHA384 C2 b267bcec3d57bb9153fd33228
17e724c2660a62ebcf936bd58
aa4295f369bc90ec66a5ed9f7
a755d69d516e9d982657c

196 207

SHA384 C3 23f61f91d8b921baf8243f397
42fc20a6821864e6e7a4fa96e
6316a51289ca9a552afa99799
b6cbe897c02a5988dd8cb

201 190

SHA384 C4 1e02dc92a41db610c9bcdc9b5
935d1fb9be5639116f6c67e97
bc1a3ac649753baba7ba021c8
13e1fe20c0480213ad371

199 188

SHA384 C5 2bc7e76188109faae9d3fc5e0
172a492f9b584a906aeed0f0f
43d4732f0f8201b696484d16f
46270a7ad444c64d5efa7

188 189

SHA384 C6 3903757a5a73c197222ec4fec
36eb6b891f2a75779feb8daff
cfe70522527282f7792e1aa17
45e052ef8ed56b920e49e

197 206

SHA384 C7 8ee5836ad7940c11570e8124a
a732133a649b7c25ea54afa6f
944f10b32e5b1c8facce294db
237a552981895350e1847

182 181

 Structure 1
SHA3-384 C1 ec01498288516fc926459f58e

2c6ad8df9b473cb0fc08c2596
da7cf0e49be4b298d88cea927
ac7f539f1edf228376d25

----- 194

SHA3-384 C2 91330740291cbd664d5d7b20c
192fc29d5e1c8376ffc607e57
fd714d23379a9d6eef1340552
d445167aaea4dd97f789e

204 200

SHA3-384 C3 2cfeb1d1c6a3500442452eb35
b7c7b155b5e6d4c1297238445

212 192

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

980

0bcf3d6b3fbdcaeb8d138c1cb
63e1d5cd18829df285ec0

SHA3-384 C4 38078331baaa86dbe9b38224a
0780e9661daa35b42066a804e
fd5215b2487b9728a19ae4940
ddbcbda39b697f13ebebb

198 188

SHA3-384 C5 d86f2cee799f13a7244a1a433
d14ea1ed82c77923d0dbe7964
fbcea926244fd40d5ed07f515
b9c918fee376c4fe3680a

191 201

SHA3-384 C6 437614b6126e0e8e8963d64cd
cc652a8114d0f4b2d376001ae
364dac55d8c069ea1433f4a07
e9ec61d424112e515ef71

186 178

SHA3-384 C7 6254cf7e23bf62a2445408e6a
127dbe1d611fd8f3dbc935d55
9d4858e0b4ecc98205ed67f9f
a536c62dc3c5f19c86333

191 197

 Structure 1
Keccak-384 C1 f7df1165f033337be098e7d28

8ad6a2f74409d7a60b49c3664
2218de161b1f99f8c681e4afa
f31a34db29fb763e3c28e

---------- 198

Keccak-384 C2 84d9dad3f15ee979c19722e23
ce4c205665c05ef89b0eaab53
3ee1a4ac3446001cfa67a9b7a
63818abe448ac90599b35

188 186

Keccak-384 C3 f964d583ef3d2f99321ca5dbb
af63e7257c2b8fcc1460c34be
75bbb4a78b16ea789ca33ba4b
25ea4ad38818b38e96df0

174 204

Keccak-384 C4 a786995442b0677bdcde1f018
7c971518a79c65b2726ed9ba0
098d6227560c768258db19d9a
7e2842d80dc3e50a8a630

186 180

Keccak-384 C5 2e04a4590bf03e593e81995e9
75678d4d57cc228b6c72c2763
d5359fb054e696e36176a4a9a
8b1622586e995663e61c8

195 187

Keccak-384 C6 4d6c269c94776693071379a98
22e11ff9cd6cdaf174963410c
4701900bf62d3de6ccda2a21f
5f89468eac9cdd8f2fb29

206 192

Keccak-384 C7 9857b23058ae5d462d5c571fa
f219795eb6cab8d6d6e775780
10c6e679c7962da6bfa7dddc6
885f37099998bc3a1b6c4

199 203

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

981

Comparative Sensitivity Testing NDBCKSHA-384 with Hashing Algorithm

We are enhancing the performance of the hash function by avoiding the basic parameter
additive key constant and one-way key concept of cryptographic hash algorithms. The
performance of NDBCKSHA 384 is tested by the statistical test of the hash function. By using
it we got good experimental results frequency (mono-bit) test shown in Table I. The probability
of one’s zero’s is near 50 percent by frequency (mono-bit) test shown in Fig. 4 and the variable
length random input message is shown in Fig. 5. Experimental results of random variable
length input message shown in Table III. The sensitivity test of statistical testing for
NDBCKSHA-384 and Hashing Algorithms are shown in Table IV and Table V. The
comparative sensitivity test results of NDBCKSHA-384 are shown in Fig. 6. The comparative
sensitivity test of NDBCKSHA-384 with hashing algorithms are shown in Fig. 7. Experimental
results of NDBCKSHA-384 are executed by python-3.9.5 and existing algorithms are executed
by python inbuilt tools.

Comparison with Basic Parameters of Hash Algorithms

The comparative results of the basic parameter of NDBCKSHA-384 with hashing algorithms
are shown in Fig. 8.
CONCLUSION
In this research, we implemented NDBCKSHA-384 to produce a 384-bit hash code from the
input message. It satisfied the security strength of hash code by statistical test and we are getting
the evaluate the performance of a hash function by using the decentralization principle of
blockchain technology. We have increased the security strength and complexity of
NDBCKSHA-384 by one-time padding bit and circular left shift. The main advantage of
NDBCKSHA-384 has mapped the hash code without the need for a cryptography key and it is

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

982

very sensitive in case of a small change in input message to produce 384-bit fixed-length hash
code with a high probability change of bits therefore it is statistically secure. The main
disadvantage of the NDBCKSHA-384 is it used limited logical and arithmetical operations to
produce 384-bit hash code.

Conflict of Interest
The authors declare there is no conflict of interest.
Author Contributions
B. R. Ambedkar think of the presented idea and executed the blockchain-based keyless hash
function computations. P. K. Bharti and Akhtar Husain verified the comparative results and
supervised the findings of this work. All authors discussed the results and contributed to
the final manuscript.
References
[1] M. Pilkington, “Blockchain Technology: Principles and Applications.” Rochester, NY,
Sep. 18, 2015. Accessed: Sep. 27, 2022. [Online]. Available:
https://papers.ssrn.com/abstract=2662660
[2] N. El-Meligy, T. Diab, A. Mohra, A. Hassan, and W. Alsobky, “A Novel Dynamic
Mathematical Model Applied in Hash Function Based on DNA Algorithm and Chaotic Maps,”
Mathematics, vol. 10, p. 1333, Apr. 2022, doi: 10.3390/math10081333.
[3] K. Aldriwish, “A double-blockchain architecture for secure storage and transaction on
the Internet of Things networks,” International Journal of Computer Science and Network
Security, vol. 21, no. 6, pp. 119–126, Jun. 2021, doi: 10.22937/IJCSNS.2021.21.6.16.
[4] A. Almutairi, O. Alrumayh, S. Alyami, N. Albagami, and M. Hossein, “A blockchain-
enabled secured fault allocation in smart grids based on μPMUs and UT,” IET Renewable
Power Generation, vol. n/a, no. n/a, doi: 10.1049/rpg2.12332.
[5] J. Polpong and P. Wuttidittachotti, “Authentication and password storing improvement
using SXR algorithm with a hash function,” IJECE, vol. 10, no. 6, p. 6582, Dec. 2020, doi:
10.11591/ijece.v10i6.pp6582-6591.
[6] A. Visconti and F. Gorla, “Exploiting an HMAC-SHA-1 Optimization to Speed up
PBKDF2,” IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 4, pp. 775–
781, Jul. 2020, doi: 10.1109/TDSC.2018.2878697.
[7] S. Mathew and K. P. Jacob, “Performance Evaluation of Popular Hash Functions,”
World Academy of Science, Engineering and Technology, pp. 449–452, 2010.
[8] R. Shinde, S. Patil, K. Kotecha, and K. Ruikar, “Blockchain for Securing AI
Applications and Open Innovations,” Journal of Open Innovation: Technology, Market, and
Complexity, vol. 7, no. 3, Art. no. 3, Sep. 2021, doi: 10.3390/joitmc7030189.
[9] L. V. Cherckesova, O. A. Safaryan, N. G. Lyashenko, and D. A. Korochentsev,
“Developing a New Collision-Resistant Hashing Algorithm,” Mathematics, vol. 10, no. 15,
Art. no. 15, Jan. 2022, doi: 10.3390/math10152769.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

983

[10] S. Abbas, M. A. Talib, A. Ahmed, F. Khan, S. Ahmad, and D.-H. Kim, “Blockchain-
Based Authentication in Internet of Vehicles: A Survey,” Sensors, vol. 21, no. 23, Art. no. 23,
Jan. 2021, doi: 10.3390/s21237927.
[11] B. R. Ambedkar, P. K. Bharti, and A. Husain, “Design and Analysis of Hash Algorithm
Using Autonomous Initial Value Proposed Secure Hash Algorithm64,” in 2021 IEEE 18th
India Council International Conference (INDICON), Dec. 2021, pp. 1–6. doi:
10.1109/INDICON52576.2021.9691602.
[12] B. R. Ambedkar, P. K. Bharti, and A. Husain, “Enhancing the Performance of Hash
Function Using Autonomous Initial Value Proposed Secure Hash Algorithm 256,” in 2022
IEEE 11th International Conference on Communication Systems and Network Technologies
(CSNT), Apr. 2022, pp. 560–565. doi: 10.1109/CSNT54456.2022.9787561.
[13] S. William, Cryptography and Network Security - Principles and Practice | Seventh
Edition | By Pearson, Seventh edition. Uttar Pradesh, India: Pearson Education, 2017.
[14] X. Zheng, X. Hu, J. Zhang, J. Yang, S. Cai, and X. Xiong, “An Efficient and Low-
Power Design of the SM3 Hash Algorithm for IoT,” Electronics, vol. 8, no. 9, Art. no. 9, Sep.
2019, doi: 10.3390/electronics8091033.
[15] A. Mohammed Ali and A. Kadhim Farhan, “A Novel Improvement With an Effective
Expansion to Enhance the MD5 Hash Function for Verification of a Secure E-Document,”
IEEE Access, vol. 8, pp. 80290–80304, 2020, doi: 10.1109/ACCESS.2020.2989050.
[16] L. Singh, A. K. Singh, and P. K. Singh, “Secure data hiding techniques: a survey,”
Multimed Tools Appl, vol. 79, no. 23, pp. 15901–15921, Jun. 2020, doi: 10.1007/s11042-018-
6407-5.
[17] Faculty of Computer Science and Information Technology, Riga Technical University
Riga, Latvia, V. Stepanova, and I. Eriņš, “The Blockchain-Based Model for Professional
Growth Data Processing,” JAIT, vol. 12, no. 4, 2021, doi: 10.12720/jait.12.4.319-326.
[18] F. E. De Guzman, B. D. Gerardo, and R. P. Medina, “Implementation of Enhanced
Secure Hash Algorithm Towards a Secured Web Portal,” in 2019 IEEE 4th International
Conference on Computer and Communication Systems (ICCCS), Feb. 2019, pp. 189–192. doi:
10.1109/CCOMS.2019.8821763.
[19] A. A. Yavuz and M. O. Ozmen, “Ultra Lightweight Multiple-time Digital Signature for
the Internet of Things Devices,” IEEE Transactions on Services Computing, pp. 1–1, 2019,
doi: 10.1109/TSC.2019.2928303.
[20] M. Samiullah et al., “An Image Encryption Scheme Based on DNA Computing and
Multiple Chaotic Systems,” IEEE Access, vol. 8, pp. 25650–25663, 2020, doi:
10.1109/ACCESS.2020.2970981.
[21] X. Fei, K. Li, W. Yang, and K. Li, “A secure and efficient file protecting system based
on SHA3 and parallel AES,” Parallel Computing, vol. 52, pp. 106–132, Feb. 2016, doi:
10.1016/j.parco.2016.01.001.
[22] K. Ideguchi, T. Owada, and H. Yoshida, “A Study on RAM Requirements of Various
SHA-3 Candidates on Low-cost 8-bit CPUs,” 260, 2009. Accessed: Nov. 23, 2021. [Online].
Available: http://eprint.iacr.org/2009/260

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

984

[23] V. Melnyk and A. Kit, “Basic operations of modern hashing algorithms,” undefined,
2013, Accessed: Dec. 17, 2021. [Online]. Available:
https://www.semanticscholar.org/paper/Basic-operations-of-modern-hashing-algorithms-
Melnyk-Kit/f423b1e8a5365b713e14a2d7d95b8c2a94c9aebf
[24] B. Madhuravani and D. S. R. Murthy, “Cryptographic hash functions: SHA family,”
International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 2,
no. 4, pp. 326–329, 2013.
[25] Y. Li and X. Li, “Chaotic hash function based on circular shifts with variable
parameters,” Chaos, Solitons & Fractals, vol. 91, pp. 639–648, Oct. 2016, doi:
10.1016/j.chaos.2016.08.014.
[26] A. A. Abdugafforovich, G. S. Rajaboevich, and A. Z. Ildarovna, “Development a Model
of a Network Attack Detection in Information and Communication Systems,” JAIT, vol. 13,
no. 4, 2022, doi: 10.12720/jait.13.4.312-319.
[27] S. Chang et al., “Third-Round Report of the SHA-3 Cryptographic Hash Algorithm
Competition,” National Institute of Standards and Technology, Gaithersburg, MD, NIST IR
7896, Nov. 2012. doi: 10.6028/NIST.IR.7896.
[28] A. Kuznetsov, M. Lutsenko, K. Kuznetsova, O. Martyniuk, V. Babenko, and I.
Perevozova, “Statistical Testing of Blockchain Hash Algorithms,” p. 13.
[29] A. Rukhin et al., “A statistical test suite for random and pseudorandom number
generators for cryptographic applications,” NIST Special Publication 800-22 (revised May 15.”
2002.

