Volume 25 Issue 04, 2022

ISSN: 1005-3026

https://dbdxxb.cn/

MONOPHONIC DISTANCE LAPLACIAN ENERGY OF SOME PRODUCT GRAPHS

Diana R

Research Scholar, Reg.Number:20113162092015, Department of Mathematics,Scott Christian College(Autonomous),Nagercoil-629 003,TamilNadu,India, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, TamilNadu,India) Email: <u>dianajino@gmail.com</u>

Binu Selin T

Assistant Professor, Department of Mathematics,Scott Christian College(Autonomous),Nagercoil-629 003,TamilNadu,India,(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, TamilNadu,India) Email: <u>binuselin@gmail.com</u>

Abstract

Let G be a simple connected graph of order n, v_i its vertex. Let $\delta_1^L, \delta_2^L, \ldots, \delta_n^L$ be the eigenvalues of the distance Laplacian matrix D^L of G. We studied the Monophonic Distance Laplacian energy in [3], $LE_M(G) = \sum_{i=1}^n \left| \mu_i^L - \frac{1}{n} \sum_{j=1}^n MT_G(v_j) \right|$, where $MT_G(v_j)$ is the jth row sum of Monophonic Distance matrix M(G), and $\mu_1^L \le \mu_2^L \ldots \le \mu_n^L$ be the eigen values of Monophonic Distance Laplacian matrix $M^L(G)$. In this paper we find the Monophonic Distance Laplacian energy of $K_n \oplus K_n$, $P_2 \otimes K_{n,n}$, $C_3 \bullet K_n$ graphs.

Keywords: Monophonic Distance Laplacian spectrum, Monophonic Distance Laplacian energy, product of graphs, lexicographic product, cartesian product, tensor product graphs. **AMS Subject Classification**: 05C12, 05C50

1 Introduction

I.Gutman introduced the concept of graph energy in 1978 [5]. Consider the graph G, which has n vertices and m edges. Let $A = (a_{ij})$ be the adjacency matrix of the graph. The energy E(G) of G is defined as $E(G) = \sum_{i=1}^{n} |\lambda_i| [2,5]$. In the year 2008, I.Gutman and others introduced the concept of graph distance energy [4]. Jieshan Vang, Lihuayou and I.Gutman introduced the distance Laplacian energy of a graph in the year 2013[8]. The monophonic number of a graph was introduced by A.P.Santhakumaran and others in 2014[10]. Let G be a connected graph with vertex set $V(G) = \{ v_1, v_2 \dots v_p \}$ and size q. The distance matrix or D-matrix, D of G is defined as $D = (d_{ij})$, where d_{ij} is the distance between the vertices v_i and v_j in G. The eigen values $\mu_1, \mu_2 \dots \mu_p$ of the D-matrix of G are said to be the D-eigen values of G and to form the D-spectrum of G, denoted by $Spec_D(G)$. The D-energy $E_D(G) = \sum_{i=1}^{n} |\mu_i| [4]$. Let G be a connected graph with vertex set $v_1, v_2 \dots v_n$. The Monophonic Distance matrix G is defined as

$$M = M(G) = (d_{m_{ij}})_{n \times n}, \text{ where } d_{m_{ij}} = \begin{cases} d_m(v_i, v_j) & \text{ if } i \neq j \\ 0 & \text{ otherwise} \end{cases}$$

Here $d_m(v_i, v_j)$ is the Monophonic Distance of v_i to v_j . The connected graph G and its Monophonic Distance Laplacian matrix defined as $M^L(G) = MT(G) - M(G)$. The eigen values of Monophonic Distance $M^L(G)$ are denoted by $\mu_1^L, \mu_2^L, \dots, \mu_n^L$ and are said to be M^L – eigen values of G and to form the M^L –spectrum of G, denoted by $Spec_{M^L}(G)$. Since the Monophonic Distance Laplacian matrix is symmetric and its eigen values are real, it can be ordered as $\mu_1^L \le \mu_2^L, \dots, \le \mu_n^L$.

The Monophonic Distance Laplacian energy of a graph is defined as

$$LE_M(G) = \sum_{i=1}^n \left| \mu_i^L - \frac{1}{n} \sum_{j=1}^n MT_G(v_j) \right|,$$

where $MT_G(v_i)$ is the jth row sum of Monophonic Distance matrix M(G).

2 Results of Some Product Graphs

Definition 2.1

The tensor product of two graphs G_1 and G_2 is the graph denoted by $G_1 \oplus G_2$, with vertex set $V(G_1 \oplus G_2) = V(G_1) \times V(G_2)$, and any two of its vertices (u_1, v_1) and (u_2, v_2) are adjacent, whenever u_1 is adjacent to u_2 in G_1 and v_1 is adjacent to v_2 in G_2 .

Example 2.2

The Monophonic Distance Laplacian energy of $K_4 \oplus K_4$ is $LE_M (K_n \oplus K_n) = 126$.

The Monophonic Distance matrix $M(K_n \oplus K_n)$ is

<i>/</i> 0	4	4	4	4	1	1	1	4	1	1	1	4	1	1	1_{λ}
4	0	4	4	1	4	1	1	1	4	1	1	1	4	1	1
4	4	0	4	1	1	4	1	1	1	4	1	1	1	4	1
4	4	4	0	0	4	4	4	4	1	1	1	4	1	1	1
4	1	1	1	0	4	4	4	4	1	1	1	4	1	1	1
1	4	1	1	4	0	4	4	1	4	1	1	1	4	1	1
1	1	4	1	4	4	0	4	1	1	4	1	1	1	4	1
1	1	1	4	4	4	4	0	1	1	1	4	1	1	1	4
4	1	1	1	4	1	1	1	0	4	4	4	4	1	1	1
1	4	1	1	1	4	1	1	4	0	4	4	1	4	1	1
1	1	4	1	1	1	4	1	4	4	0	4	1	1	4	1
1	1	1	4	1	1	1	4	4	4	4	0	1	1	1	4
4	1	1	1	4	1	1	1	4	1	1	1	0	4	4	4
1	4	1	1	1	4	1	1	1	4	1	1	4	0	4	4
1	1	4	1	1	1	4	1	1	1	4	1	4	4	0	4
\1	1	1	4	1	1	1	4	1	1	1	4	4	4	4	0/

Theorem 2.3

Let K_n be the complete graph of order n^2 , then $LE_M(K_n \oplus K_n) = 14(n^2 - 2n + 1)$, for $n \ge 3$. **Proof** The M^L – spectrum of $K_n \oplus K_n$ is

$$Spec_{M^{L}}(K_{n} \oplus K_{n}) = \begin{pmatrix} 0 & n^{2} + 3n & n^{2} + 6n \\ 1 & 2n - 2 & n^{2} - 2n + 1 \end{pmatrix}$$

The Monophonic Distance Laplacian energy of $K_n \oplus K_n$ is

$$LE_M (K_n \oplus K_n) = \sum_{i=1}^{n^2} |\mu_i^L - n^2 + 6n - 7|$$

= $|0 - n^2 + 6n - 7| +$
 $(2n - 2)|(n^2 + 3n) - (n^2 + 6n - 7)| +$
 $n^2 - 2n + 1 |(n^2 + 6n) - (n^2 + 6n - 7)|$
 $LE_M (K_n \oplus K_n) = 14[n^2 - 2n + 1]$

Definition 2.4

The cartesian product of two graphs G and H denotes by G \otimes H has the vertex set V(G)× V(H) and in which two vertices (g, h) and (g', h') are adjacent if and only if either g = g' and h is adjacent to h' in H (or) h = h' and g is adjacent to g' in G.[10] **Theorem 2.5**

If $(P_2 \otimes K_{n,n})$ be the cartesian product of complete bipartite graph $K_{n,n}$ and path graph P_2 $LE_M(P_2 \otimes K_{n,n}) = LE_M(P_2) + 5LE_M(K_{n,n}) + 6$, for $n \ge 3$. **proof** The Mb substant of (P, OK_n) is

The M^L – spectrum of $(P_2 \otimes K_{n,n})$ is

 $Spec_{M^{L}}(P_{2} \otimes K_{n,n}) = \begin{pmatrix} 0 & 12n-8 & 10n & 14n-8 & 14n & 18n-8 \\ 1 & 1 & 1 & 2n-2 & 2n-2 & 1 \end{pmatrix}$ The Monophonic Distance Laplacian energy of $(P_{2} \otimes K_{n,n})$ is

$$LE_{M}(P_{2} \otimes K_{n,n}) = \sum_{i=1}^{2} |\mu_{i}^{L} - (n-1)| + \sum_{i=1}^{2n} |\mu_{i}^{L} - (3n-2)| + 6$$
$$= 2 + 5[8(n-1)] + 6$$
$$= LE_{M}(2) + 5LE_{M}(K_{n,n}) + 6$$

Definition 2.6

The lexicographic product G•H of two graphs G and H has vertex set V(G)× V(H) and two vertices (u_1, v_1) and (u_2, v_2) are adjacent whenever $u_1u_2 \in E(G)$ or $u_1 = u_2$ and $v_1v_2 \in E(H)$.

Theorem 2.7

If $C_3 \bullet K_n$ be the lexicographic product of cycle graph C_3 and complete graph K_n . Then $LE_M(C_3 \bullet K_n) = 2(3n-1)$. Proof

Let $C_3 \bullet K_n$ be the lexicographic graph of order 3n.

Monophonic Distance matrix is written as

$$M(C_3 \bullet K_n) = \begin{pmatrix} J_n - I_n & J_n & J_n \\ J_n & J_n - I_n & J_n \\ J_n & J_n & J_n - I_n \end{pmatrix}, \text{ where } J_n \text{ is the matrix with all entries 1's of order } n$$

order n and I_n is the identity matrix of order n.

Monophonic Distance Laplacian matrix is of the form

$$M^{L}(C_{3} \bullet K_{n}) = \begin{pmatrix} J_{n} + (3n-2)I_{n} & -J_{n} & -J_{n} \\ -J_{n} & J_{n} + (3n-2)I_{n} & -J_{n} \\ -J_{n} & -J_{n} & J_{n} + (3n-2)I_{n} \end{pmatrix}$$

The M^{L}_{L} spectrum of Spec $c(C \bullet K) = \begin{pmatrix} 0 & 3n \\ 0 & 3n \end{pmatrix}$

The M^L – spectrum of $\operatorname{Spec}_{M^L}(C_3 \bullet K_n) = \begin{pmatrix} 0 & 3n \\ 1 & 3n-1 \end{pmatrix}$ Monophonic distance Laplacian energy is

$$LE_M (C_3 \bullet K_n) = \sum_{i=1}^{3} |\mu_i^L - 2| + 3 \sum_{i=1}^{n} |\mu_i^L - (n-1)|$$

= 4+3(2n-2)
=2(3n-1).

Conclusion

In this paper we found Monophonic Distance Laplacian energy of cartesian, lexicographic and tensor product of graphs. We can extend the concepts to some new products of graphs also.

References

[1] S.K. Ayyaswamy and S.Balachandran, On Detour Spectra of some graphs, world Academy of science, engineering and Technology, International Journal of Mathematical and computational sciences, vol:4, No:7, 2010.

[2] R. Balakrishnan, The energy of a graph, August 2004, Linear Algebra and its Applications 387(1):287-295.

[3] R. Diana, T. Binu Selin, Monophonic Distance Laplacian Energy of Graphs, Advances and Applications in Mathematical Sciences volume 21, issue 7, May 2022, pages 3865-3872.

[4] Gopalapillai Indulal, Ivan Gutman and Ambat Vijayakumar, On distance energy of a graphs,MATCH Commun.Math.Comput(2008),461-472.

[5] I.Gutman, The energy of a graph, Besmath-statist.sekt.Forschungsz.graz,103,1-22 (1978).

[6]] F.Harary, Graph Theory, Addition-Wesley, Boston, 1969.

[7] Ivan Gutman, Bo Zhou, Laplacian energy of a graph, Linear Algebra and its Applications 414(2006) 29-37.

[8] Jieshan Yang , Lihua you and I.Gutman, Bounds On the Distance Laplacian Energy of Graphs, Kragujevac Journal of Mathematics, volume 37(2), (2013) 245-255.

[9] R.Merris, A survey of graph Laplacians, Lin, Multilin.Algebra 39 (1995) 19-31.

[10] A.P.Santhakumaran, P.Titus and K.Ganesamoorthy, On the monophonic number of a graph, J.Apply. Math & Informatics vol.32(2014), No 1-2, pp 255-266.

[11] K.Sowndhariya and A.Muthusamy ,Decomposition of Cartesian Product of Complete Graphs in to Sunset Graphs of Order Eight, ar Xiv:1907.12329 vol(math.co) 29 Jul 2019.