MONOPHONIC DISTANCE LAPLACIAN ENERGY OF SOME PRODUCT GRAPHS

Diana R
Research Scholar, Reg.Number:20113162092015, Department of Mathematics,Scott Christian College(Autonomous),Nagercoil-629 003,TamilNadu,India, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, TamilNadu,India)
Email: dianajino@gmail.com

Binu Selin T

Assistant Professor, Department of Mathematics,Scott Christian
College(Autonomous),Nagercoil-629 003,TamilNadu,India,(Affiliated to Manonmaniam
Sundaranar University, Abishekapatti, Tirunelveli-627 012, TamilNadu,India)
Email:binuselin@gmail.com

Abstract

Let G be a simple connected graph of order n, v_{i} its vertex. Let $\delta_{1}^{L}, \delta_{2}^{L} \ldots \ldots, \delta_{n}^{L}$ be the eigenvalues of the distance Laplacian matrix D^{L} of G . We studied the Monophonic Distance Laplacian energy in [3], $L E_{M}(G)=\sum_{i=1}^{n}\left|\mu_{i}^{L}-\frac{1}{n} \sum_{j=1}^{n} M T_{G}\left(v_{j}\right)\right|$, where $M T_{G}\left(v_{j}\right)$ is the $\mathrm{j}^{\text {th }}$ row sum of Monophonic Distance matrix $M(G)$, and $\mu_{1}^{L} \leq \mu_{2}^{L} \ldots . \leq \mu_{n}^{L}$ be the eigen values of Monophonic Distance Laplacian matrix $M^{L}(G)$. In this paper we find the Monophonic Distance Laplacian energy of $K_{n} \oplus K_{n}, P_{2} \otimes K_{n, n}, C_{3} \bullet K_{n}$ graphs. Keywords: Monophonic Distance Laplacian spectrum, Monophonic Distance Laplacian energy, product of graphs, lexicographic product, cartesian product, tensor product graphs. AMS Subject Classification: 05C12, 05C50

1 Introduction

I.Gutman introduced the concept of graph energy in 1978 [5]. Consider the graph G, which has n vertices and m edges. Let $A=\left(a_{i j}\right)$ be the adjacency matrix of the graph. The energy $\mathrm{E}(\mathrm{G})$ of G is defined as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|[2,5]$. In the year 2008, I.Gutman and others introduced the concept of graph distance energy [4]. Jieshan Vang, Lihuayou and I.Gutman introduced the distance Laplacian energy of a graph in the year 2013[8]. The monophonic number of a graph was introduced by A.P.Santhakumaran and others in 2014[10]. Let G be a connected graph with vertex set $\mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2} \ldots . v_{p}\right\}$ and size q. The distance matrix or D -matrix, D of G is defined as $\mathrm{D}=\left(d_{i j}\right)$, where $d_{i j}$ is the distance between the vertices v_{i} and v_{j} in G . The eigen values $\mu_{1}, \mu_{2} \ldots \mu_{p}$ of the D -matrix of G are said to be the D-eigen values of G and to form the D-spectrum of G, denoted by $\operatorname{Spec}_{D}(G)$. The D-energy $E_{D}(G)=\sum_{i=1}^{n}\left|\mu_{i}\right|[4]$. Let G be a connected graph with vertex set $v_{1}, v_{2} \ldots v_{n}$. The Monophonic Distance matrix G is defined as
$M=M(G)=\left(d_{m_{i j}}\right)_{n \times n}$, where $d_{m_{i j}}=\left\{\begin{array}{cc}d_{m}\left(v_{i}, v_{j}\right) & \text { if } i \neq j \\ 0 & \text { otherwise }\end{array}\right.$
Here $d_{m}\left(v_{i}, v_{j}\right)$ is the Monophonic Distance of v_{i} to v_{j}. The connected graph G and its Monophonic Distance Laplacian matrix defined as $M^{L}(G)=M T(G)-M(G)$. The eigen values of Monophonic Distance $M^{L}(G)$ are denoted by $\mu_{1}^{L}, \mu_{2}^{L} \ldots ., \mu_{n}^{L}$ and are said to be M^{L} - eigen values of G and to form the M^{L}-spectrum of G, denoted by $\operatorname{Spec}_{M^{L}}(G)$. Since the Monophonic Distance Laplacian matrix is symmetric and its eigen values are real, it can be ordered as $\mu_{1}^{L} \leq \mu_{2}^{L} \ldots . \leq \mu_{n}^{L}$.

The Monophonic Distance Laplacian energy of a graph is defined as

$$
L E_{M}(G)=\sum_{i=1}^{n}\left|\mu_{i}^{L}-\frac{1}{n} \sum_{j=1}^{n} M T_{G}\left(v_{j}\right)\right|
$$

where $M T_{G}\left(v_{j}\right)$ is the $\mathrm{j}^{\text {th }}$ row sum of Monophonic Distance matrix $M(G)$.

2 Results of Some Product Graphs

Definition 2.1

The tensor product of two graphs G_{1} and G_{2} is the graph denoted by $G_{1} \oplus G_{2}$, with vertex set $\mathrm{V}\left(G_{1} \oplus G_{2}\right)=\mathrm{V}\left(G_{1}\right) \times \mathrm{V}\left(G_{2}\right)$, and any two of its vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent, whenever u_{1} is adjacent to u_{2} in G_{1} and v_{1} is adjacent to v_{2} in G_{2}.

Example 2.2

The Monophonic Distance Laplacian energy of $K_{4} \oplus K_{4}$ is $L E_{M}\left(K_{n} \oplus K_{n}\right)=126$.

Fig:1
The Monophonic Distance matrix $M\left(K_{n} \oplus K_{n}\right)$ is

$$
\left(\begin{array}{llllllllllllllll}
0 & 4 & 4 & 4 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 \\
4 & 0 & 4 & 4 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 \\
4 & 4 & 0 & 4 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 \\
4 & 4 & 4 & 0 & 0 & 4 & 4 & 4 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 \\
4 & 1 & 1 & 1 & 0 & 4 & 4 & 4 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 \\
1 & 4 & 1 & 1 & 4 & 0 & 4 & 4 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 \\
1 & 1 & 4 & 1 & 4 & 4 & 0 & 4 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 \\
1 & 1 & 1 & 4 & 4 & 4 & 4 & 0 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 \\
4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 0 & 4 & 4 & 4 & 4 & 1 & 1 & 1 \\
1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 4 & 0 & 4 & 4 & 1 & 4 & 1 & 1 \\
1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 4 & 4 & 0 & 4 & 1 & 1 & 4 & 1 \\
1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 4 & 4 & 4 & 0 & 1 & 1 & 1 & 4 \\
4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 0 & 4 & 4 & 4 \\
1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 4 & 0 & 4 & 4 \\
1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 4 & 4 & 0 & 4 \\
1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 1 & 1 & 1 & 4 & 4 & 4 & 4 & 0
\end{array}\right)
$$

Theorem 2.3
Let K_{n} be the complete graph of order n^{2}, then
$L E_{M}\left(K_{n} \oplus K_{n}\right)=14\left(n^{2}-2 n+1\right)$, for $n \geq 3$.

Proof

The M^{L} - spectrum of $K_{n} \oplus K_{n}$ is

$$
\operatorname{Spec}_{M^{L}}\left(K_{n} \oplus K_{n}\right)=\left(\begin{array}{ccc}
0 & n^{2}+3 n & n^{2}+6 n \\
1 & 2 n-2 & n^{2}-2 n+1
\end{array}\right)
$$

The Monophonic Distance Laplacian energy of $K_{n} \oplus K_{n}$ is

$$
\begin{gathered}
L E_{M}\left(K_{n} \oplus K_{n}\right)=\sum_{i=1}^{n^{2}}\left|\mu_{i}^{L}-n^{2}+6 n-7\right| \\
=\left|0-n^{2}+6 n-7\right|+ \\
(2 n-2)\left|\left(n^{2}+3 n\right)-\left(n^{2}+6 n-7\right)\right|+ \\
n^{2}-2 n+1\left|\left(n^{2}+6 n\right)-\left(n^{2}+6 n-7\right)\right| \\
L E_{M}\left(K_{n} \oplus K_{n}\right)= \\
14\left[n^{2}-2 n+1\right]
\end{gathered}
$$

Definition 2.4
The cartesian product of two graphs G and H denotes by $G \otimes H$ has the vertex set $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and in which two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent if and only if either $g=g^{\prime}$ and h is adjacent to h^{\prime} in H (or) $h=h^{\prime}$ and g is adjacent to g^{\prime} in G.[10]

Theorem 2.5

If $\left(P_{2} \otimes K_{n, n}\right)$ be the cartesian product of complete bipartite graph $K_{n, n}$ and path graph P_{2} $L E_{M}\left(P_{2} \otimes K_{n, n}\right)=L E_{M}\left(P_{2}\right)+5 L E_{M}\left(K_{n, n}\right)+6$, for $n \geq 3$.

proof

The $M^{L}-$ spectrum of $\left(P_{2} \otimes K_{n, n}\right)$ is
$\operatorname{Spec}_{M^{L}}\left(P_{2} \otimes K_{n, n}\right)=\left(\begin{array}{cccccc}0 & 12 n-8 & 10 n & 14 n-8 & 14 n & 18 n-8 \\ 1 & 1 & 1 & 2 n-2 & 2 n-2 & 1\end{array}\right)$
The Monophonic Distance Laplacian energy of $\left(P_{2} \otimes K_{n, n}\right)$ is

$$
\begin{aligned}
L E_{M}\left(P_{2} \otimes K_{n, n}\right)= & \sum_{i=1}^{2}\left|\mu_{i}^{L}-(n-1)\right|+ \\
& \sum_{i=1}^{2 n}\left|\mu_{i}^{L}-(3 n-2)\right|+6 \\
= & 2+5[8(n-1)]+6 \\
= & L E_{M}(2)+5 L E_{M}\left(K_{n, n}\right)+6
\end{aligned}
$$

Definition 2.6

The lexicographic product $\mathrm{G} \cdot \mathrm{H}$ of two graphs G and H has vertex set $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and two vertices (u_{1}, v_{1}) and (u_{2}, v_{2}) are adjacent whenever $u_{1} u_{2} \in E(G)$ or $u_{1}=u_{2}$ and $v_{1} v_{2} \in$ $E(H)$.
Theorem 2.7
If $C_{3} \bullet K_{n}$ be the lexicographic product of cycle graph C_{3} and complete graph K_{n}. Then $L E_{M}\left(C_{3} \cdot K_{n}\right)=2(3 n-1)$.
Proof
Let $C_{3} \bullet K_{n}$ be the lexicographic graph of order 3 n .
Monophonic Distance matrix is written as
$M\left(C_{3} \bullet K_{n}\right)=\left(\begin{array}{ccc}J_{n}-I_{n} & J_{n} & J_{n} \\ J_{n} & J_{n}-I_{n} & J_{n} \\ J_{n} & J_{n} & J_{n}-I_{n}\end{array}\right)$, where J_{n} is the matrix with all entries 1's of order n and I_{n} is the identity matrix of order n.

Monophonic Distance Laplacian matrix is of the form

$$
M^{L}\left(C_{3} \cdot K_{n}\right)=\left(\begin{array}{ccc}
J_{n}+(3 n-2) I_{n} & -J_{n} & -J_{n} \\
-J_{n} & J_{n}+(3 n-2) I_{n} & -J_{n} \\
-J_{n} & -J_{n} & J_{n}+(3 n-2) I_{n}
\end{array}\right)
$$

The M^{L} - spectrum of $\operatorname{Spec}_{M^{L}}\left(C_{3} \cdot K_{n}\right)=\left(\begin{array}{cc}0 & 3 n \\ 1 & 3 n-1\end{array}\right)$
Monophonic distance Laplacian energy is

$$
\begin{aligned}
L E_{M}\left(C_{3} \cdot K_{n}\right) & =\sum_{i=1}^{3}\left|\mu_{i}^{L}-2\right|+3 \sum_{i=1}^{n}\left|\mu_{i}^{L}-(n-1)\right| \\
& =4+3(2 \mathrm{n}-2) \\
& =2(3 \mathrm{n}-1) .
\end{aligned}
$$

Conclusion

In this paper we found Monophonic Distance Laplacian energy of cartesian, lexicographic and tensor product of graphs. We can extend the concepts to some new products of graphs also.

References

[1] S.K. Ayyaswamy and S.Balachandran, On Detour Spectra of some graphs, world Academy of science, engineering and Technology, International Journal of Mathematical and computational sciences, vol:4,No:7,2010.
[2] R. Balakrishnan, The energy of a graph, August 2004,Linear Algebra and its Applications 387(1):287-295.
[3] R. Diana, T. Binu Selin, Monophonic Distance Laplacian Energy of Graphs,Advances and Applications in Mathematical Sciences volume 21,issue 7,May2022,pages 3865-3872.
[4] Gopalapillai Indulal, Ivan Gutman and Ambat Vijayakumar, On distance energy of a graphs,MATCH Commun.Math.Comput(2008),461-472.
[5] I.Gutman, The energy of a graph, Besmath-statist.sekt.Forschungsz.graz,103,1-22 (1978).
[6]] F.Harary, Graph Theory, Addition-Wesley, Boston,1969.
[7] Ivan Gutman, Bo Zhou, Laplacian energy of a graph, Linear Algebra and its Applications 414(2006) 29-37.
[8] Jieshan Yang, Lihua you and I.Gutman, Bounds On the Distance Laplacian Energy of Graphs, Kragujevac Journal of Mathematics, volume 37(2), (2013) 245-255.
[9] R.Merris, A survey of graph Laplacians , Lin, Multilin.Algebra 39 (1995) 19-31.
[10] A.P.Santhakumaran, P.Titus and K.Ganesamoorthy, On the monophonic number of a graph, J.Apply. Math \& Informatics vol.32(2014), No 1-2, pp 255-266.
[11] K.Sowndhariya and A.Muthusamy ,Decomposition of Cartesian Product of Complete Graphs in to Sunset Graphs of Order Eight, ar Xiv:1907.12329 vol(math.co) 29 Jul 2019.

