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Abstract 
                     Let G be a simple connected graph of order n, 𝑣  its vertex. Let 𝛿 , 𝛿 … . . , 𝛿   be 
the eigenvalues of the distance Laplacian matrix 𝐷  of G. We studied the  Monophonic 

Distance Laplacian energy in [3] ,  𝐿𝐸 (𝐺) = ∑ 𝜇 − ∑ 𝑀𝑇 𝑣 , where 𝑀𝑇 𝑣  is 

the  j th row  sum of Monophonic Distance  matrix 𝑀(𝐺), and  𝜇 ≤ 𝜇 … . . ≤ 𝜇  be the eigen 
values of Monophonic Distance Laplacian matrix 𝑀 (𝐺). In this paper we find the 
Monophonic Distance Laplacian energy of 𝐾 ⨁𝐾  , 𝑃 ⨂𝐾 ,  ,  𝐶 • 𝐾  graphs. 

Keywords: Monophonic Distance Laplacian spectrum, Monophonic Distance Laplacian 
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1 Introduction 

I.Gutman introduced the concept of graph energy in 1978 [5]. Consider the graph G, which 
has n vertices and m edges. Let 𝐴 = (𝑎 ) be the adjacency matrix of the graph. The energy 

E(G) of G is defined as 𝐸(𝐺) =  ∑ |𝜆 |[2,5]. In the year 2008, I.Gutman and others 
introduced the concept of graph  distance energy  [4]. Jieshan Vang, Lihuayou and 
I.Gutman introduced the distance Laplacian energy of a graph in the year 2013[8]. The 
monophonic number of a graph was introduced by A.P.Santhakumaran and others in 
2014[10]. Let G be a connected graph with vertex set V(G)={ 𝑣 , 𝑣 … . 𝑣 }  and size q. The 

distance matrix or D-matrix, D of G is defined as D = (𝑑 ) ,where 𝑑  is the distance 

between the vertices 𝑣  and 𝑣  in G. The eigen values  𝜇 , 𝜇 … . 𝜇  of the D-matrix of G 

are said to be the D-eigen values of G and to form the D-spectrum of G, denoted by 
𝑆𝑝𝑒𝑐 (𝐺) . The D-energy 𝐸 (𝐺) = ∑ |𝜇 |[4] . Let G be a connected graph with vertex 
set  𝑣 , 𝑣 … . 𝑣 .  The Monophonic Distance matrix G is defined as  
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𝑀 = 𝑀(𝐺) = (𝑑 ) × , where 𝑑 =
𝑑 𝑣 , 𝑣        𝑖𝑓        𝑖 ≠ 𝑗

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Here 𝑑 (𝑣 , 𝑣 ) is the Monophonic Distance of 𝑣  to 𝑣 . The  connected graph G and its 

Monophonic Distance Laplacian matrix defined as 𝑀 (𝐺) = 𝑀𝑇(𝐺) − 𝑀(𝐺). The eigen 
values of Monophonic Distance 𝑀 (𝐺) are denoted by 𝜇 , 𝜇 … . . , 𝜇  and are said to be 
𝑀 − eigen values of G and to form the 𝑀 −spectrum of G, denoted by 𝑆𝑝𝑒𝑐 (𝐺). Since 

the Monophonic Distance Laplacian matrix is symmetric and its eigen values are real, it 
can be ordered as 𝜇 ≤ 𝜇 … . . ≤ 𝜇 . 

 The Monophonic Distance Laplacian energy of a graph is defined as  

                                                𝐿𝐸 (𝐺) = ∑ 𝜇 − ∑ 𝑀𝑇 (𝑣 )  , 

 where 𝑀𝑇 𝑣  is the  j th row  sum of Monophonic Distance  matrix 𝑀(𝐺). 

 
2  Results of  Some Product Graphs  

Definition 2.1 
The tensor product of two graphs 𝐺  and 𝐺  is the graph denoted by 𝐺 ⨁𝐺 ,with vertex set 
V(𝐺 ⨁𝐺  ) = V(𝐺 ) × V(𝐺 ), and any two of  its vertices (𝑢 , 𝑣 ) and (𝑢 , 𝑣 ) are adjacent, 
whenever 𝑢  is adjacent to 𝑢  in 𝐺  and 𝑣  is adjacent to 𝑣  in 𝐺 . 
Example 2.2 
The Monophonic Distance Laplacian energy  of  𝐾 ⨁𝐾  is 𝐿𝐸  (𝐾 ⨁𝐾 ) = 126. 

                        

                                             
                                                                     Fig:1 
The Monophonic Distance matrix 𝑀(𝐾 ⨁𝐾 ) 𝑖𝑠 
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Theorem 2.3 
Let 𝐾  be the complete graph of order 𝑛  , then  
𝐿𝐸 (𝐾 ⨁𝐾  ) = 14(𝑛 − 2𝑛 + 1), 𝑓𝑜𝑟 𝑛 ≥ 3. 
Proof 
The 𝑀 − spectrum  of  𝐾 ⨁𝐾  is 

𝑆𝑝𝑒𝑐 ( 𝐾 ⨁𝐾 ) = 0 𝑛 + 3𝑛
1 2𝑛 − 2

    𝑛 + 6𝑛
𝑛 − 2𝑛 + 1

 

The Monophonic Distance Laplacian energy  of  𝐾 ⨁𝐾  is 

𝐿𝐸  (𝐾 ⨁𝐾 ) = 𝜇 − 𝑛 + 6𝑛 − 7  

= |0 − 𝑛 + 6𝑛 − 7| + 

                               (2𝑛 − 2)|(𝑛 + 3𝑛) − (𝑛 + 6𝑛 − 7)| + 

                             𝑛 − 2𝑛 + 1  |(𝑛 + 6𝑛) − (𝑛 + 6𝑛 − 7)| 

                            𝐿𝐸 (𝐾 ⨁𝐾  ) =  14[𝑛 − 2𝑛 + 1] 
Definition 2.4 
The cartesian product of two graphs G and H denotes by G⨂H  has the vertex set 
V(G)× V(H) and in which two vertices (𝑔, ℎ) and (𝑔 , ℎ ) are adjacent if and only if either 
𝑔 = 𝑔  and h is adjacent to ℎ in H (or) ℎ = ℎ  and g is adjacent to 𝑔  in G.[10] 
Theorem 2.5 
If (𝑃 ⨂𝐾 , ) be the cartesian product of complete bipartite graph 𝐾 ,  and path graph 𝑃  

𝐿𝐸 (𝑃 ⨂𝐾 , ) = 𝐿𝐸 (𝑃  ) + 5𝐿𝐸 𝐾 ,  + 6, for  𝑛 ≥ 3. 

𝐩𝐫𝐨𝐨𝐟 
The 𝑀 − spectrum  of (𝑃 ⨂𝐾 , ) is 
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𝑆𝑝𝑒𝑐 (𝑃 ⨂𝐾 , ) =
0 12𝑛 − 8   
1 1

 
10𝑛 14𝑛 − 8

1 2𝑛 − 2
   

14𝑛 18𝑛 − 8
2𝑛 − 2 1

 

The Monophonic Distance Laplacian energy of  (𝑃 ⨂𝐾 , ) is 

𝐿𝐸 (𝑃 ⨂𝐾 , ) = 𝜇 − (𝑛 − 1) + 

                                                                              𝜇 − (3𝑛 − 2) + 6                                          

                                                                 = 2 + 5[8(𝑛 − 1)] + 6 

                             = 𝐿𝐸 (2 ) + 5𝐿𝐸 𝐾 ,  + 6 

Definition 2.6 
The lexicographic product G•H of two graphs G and H has vertex set V(G)× V(H) and two 
vertices (𝑢 , 𝑣 ) and (𝑢 , 𝑣 ) are adjacent whenever 𝑢 𝑢 ∈ 𝐸(𝐺) or 𝑢 = 𝑢  and 𝑣 𝑣 ∈

𝐸(𝐻). 
Theorem 2.7 
If  𝐶 • 𝐾  be the lexicographic product of cycle graph  𝐶   and complete graph 𝐾 .Then 
𝐿𝐸 ( 𝐶 • 𝐾 )= 2(3n-1). 
Proof 
Let  𝐶 • 𝐾  be the lexicographic graph of order 3n. 
Monophonic Distance matrix is written as 

𝑀( 𝐶 • 𝐾 ) =

𝐽 − 𝐼 𝐽 𝐽
𝐽 𝐽 − 𝐼 𝐽
𝐽 𝐽 𝐽 − 𝐼

, where 𝐽  is the matrix with all entries 1's of 

order n and 𝐼 is the identity matrix of order n. 

Monophonic Distance Laplacian matrix is of the form 

 𝑀 ( 𝐶 • 𝐾 ) =

𝐽 + (3𝑛 − 2)𝐼 −𝐽 −𝐽

−𝐽 𝐽 + (3𝑛 − 2)𝐼 −𝐽
−𝐽 −𝐽 𝐽 + (3𝑛 − 2)𝐼

 

The  𝑀 − spectrum  of  Spec ( 𝐶 • 𝐾 ) =
0 3𝑛
1 3𝑛 − 1

 

Monophonic distance Laplacian energy is 

𝐿𝐸  ( 𝐶 • 𝐾 ) = 𝜇 − 2 + 3 𝜇 − (𝑛 − 1)  

                         = 4+3(2n-2) 
                         =2(3n-1). 
 
Conclusion      
In this paper we found Monophonic Distance Laplacian energy of cartesian, lexicographic 
and tensor product of graphs. We can extend the concepts to some new products of graphs 
also. 
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