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Abstract: Identification of missing values from time-series data samples is a complex 
signal processing task, that involves pattern analysis, pre-emptive modelling, and regression 
techniques. A wide variety of models are proposed by researchers to optimize efficiency of 
missing value identification techniques, but most of them are highly complex, and cannot 
be used for large-scale information sets. Moreover, the simpler models that are applied to 
large-scale sets have low efficiency levels, which limits their applicability for real-time 
applications. To overcome these issues, this text proposes design of a novel Elephant 
Herding Optimization (EHO) Model for tuning an efficient missing value identification 
ensemble classifier, which can be used for feature-based data samples. The proposed model 
uses a combination of Deep Forest (DF), Support Vector Machines (SVM), Naïve Bayes 
(NB), and k Nearest Neighbour (kNN) classifiers for correlative analysis of missing value 
samples. The efficiency of proposed classifier is optimized via EHO model, which assists 
in identification of classifier hyper parameters in order to improve performance of missing 
value identification process. The EHO model uses an efficient fitness function that 
combines accuracy, precision, and recall levels obtained when evaluating effectiveness of 
the missing value identification process. To evaluate its performance, the model was used 
for multiple large-scale datasets, and an accuracy improvement of 9.5%, with a precision 
improvement of 8.3%, and recall improvement of 4.5% was observed, when compared with 
standard regression-based pre-emption models. Due to this, the proposed method was 
observed to be highly scalable, and can be applied to multidomain use cases. 

Keywords: Missing, Value, NB, kNN, SVM, DF, EHO, Accuracy, Precision, Recall, 
Optimizations 

1. Introduction 

A time series is generally understood to refer to a collection of measurements that have been 
obtained at consistent time intervals. The basic objective of time series prediction is to foretell 
future tendencies in the data by examining past data. This is accomplished via the use of 
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historical data. As a result, it plays an important part in the process of decision-making for a 
variety of applications, including industrial monitoring, business metrics, management of 
electrical grids, and other applications. The following is a list of probable overarching 
categories for the challenges with the time series. If we are just concerned with the next one- 
or two-time steps, as is the case with the overwhelming majority of time series issues, we will 
create a prediction that is referred to as a one-step or single-step forecast. Predictions that look 
multiple steps into the future are referred to as multistep predictions since they gaze quite far 
into the future. When making a prediction that involves a number of stages, you have the option 
of using either the direct technique or the iterative method. The direct approach requires the 
creation of a model that can foretell the outcomes of many stages in the future, while the 
iterative method necessitates the creation of a series of predictions for one step at a time up 
until the relevant step is reached. The field of time series prediction has seen a recent uptick in 
the use of artificial intelligence (AI). The support vector machine is a well-known artificial 
intelligence technology that is used for time series prediction (SVM). During the 1970s, Vapnik 
and his fellow employees at AT&T Bell Laboratories made important strides in the 
development of SVM. It was first developed to assist with categorization issues and had 
practical uses such as optical character recognition at the time. In [1, 2, 3], an improvement 
was made to the support vector machine in order to address issues with regression. Neural 
networks must be concerned with local minimums, but support vector machines do not have 
this worry. However, in order to tackle quadratic programming issues, a significant amount of 
computing power is required. The Takagi-Sugeno Modeling (TSM), and Least Squares Support 
Vector Machine, sometimes known as the LSSVM, was presented in reference [4, 5, 6] as a 
method for converting constraint problems into a linear system. Although the LSSVM is better 
at cutting down on computational expenses, in the process, the sparsity of the support vectors 
is lost. The weighted LSSVM is an alternate strategy that was presented to cope with sparsity 
and also used Local Median-based Gaussian Naive Bayes (LMeGNB) [7, 8, 9]. LSSVM has 
recently been successful in a number of domains, including time series prediction and financial 
forecasting, among others. Since the data for time series are obtained from real-world 
scenarios, it is common for there to be values that are missing. Failures of the sensors or 
mistakes made by humans might explain for the missing data. [10, 11, 12, 13] In order to 
address the issue of missing data, a variety of ad hoc approaches have been tried out throughout 
the years. Among them are techniques and deletion processes that work toward the goal of 
finding a solitary replacement for each value that was lost. Ad hoc approaches have the 
potential to have an effect on both standard errors and biases in estimates [14, 15]. Despite this, 
research demonstrates that they are nevertheless used on a regular basis [16, 17, 18]. The 
maximum likelihood method [19, 20] and the multiple imputation methods [21, 22] are two of 
the most well-known and successful approaches to the imputation of missing data. When using 
multiple imputation, copies of the missing information are first generated, and then those 
duplicates are separately imputed. The ultimate judgment was arrived at by compiling the 
results of several parameter estimates as well as standard errors, one of each kind for every 
copy that was examined. Also, maximum likelihood with generative adversarial network 
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(GAN) and bi-directional long short-term memory (Bi-LSTM) [23, 24, 25] takes into account 
all of the data that is available and produces estimates with the greatest probability. Considering 
that multiple imputation and maximum probability often provide the same results, choose one 
over the other is a very subjective decision. It is difficult to make predictions based on time 
series since there is missing information. When compared to other types of data analysis, time 
series prediction stands out due to the temporal relevance of its predictions. 

These findings imply that academics have developed a broad range of models in an effort to 
improve the efficiency of missing value detection techniques. Despite this, the great majority 
of these models are very complex to implement and cannot be used to enormous information 
sets. In addition, the low levels of efficiency that simpler models have when applied to large-
scale datasets are a hurdle to the development of real-time applications. This paper provides a 
unique Elephant Herding Optimization (EHO) Model for optimizing an efficient ensemble 
classifier for missing value detection that is applicable to feature-based data sets. The goal of 
this model is to overcome the problems that have been identified. In section 3 of this text, using 
a wide range of datasets, an evaluation of the usefulness of the model was carried out. This 
performance was evaluated in comparison to industry standards in order to demonstrate its 
superiority over contemporary models. The investigation comes to a close with some general 
thoughts on the work that was offered as well as some recommendations for broadening its 
applicability under different use cases. 

2. Proposed Missing Value Identification technique via Bioinspired Predictive 
Modeling 

Based on the review of existing missing value identification models, it can be observed that 
most of these models are highly complex, and cannot be used for large-scale information sets. 
Moreover, the simpler models that are applied to large-scale sets have low efficiency levels, 
which limits their applicability for real-time applications.  
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Figure 1. Flow of the proposed missing value identification process 

To overcome these issues, this section proposes design of a novel Elephant Herding 
Optimization (EHO) Model for tuning an efficient missing value identification ensemble 
classifier, which can be used for feature-based data samples. Overall flow of the proposed 
model is depicted in figure 1, where it can be observed that the proposed model uses a 
combination of Deep Forest (DF), Support Vector Machines (SVM), Naïve Bayes (NB), and k 
Nearest Neighbour (kNN) classifiers for correlative analysis of missing value samples. The 
efficiency of proposed classifier is optimized via EHO model, which assists in identification 
of classifier hyper parameters in order to improve performance of missing value identification 
process. The EHO model uses an efficient fitness function that combines accuracy, precision, 
and recall levels obtained when evaluating effectiveness of the missing value identification 
process. 
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Based on the flow, it can be observed that training datasets are used to train Naïve Bayes (NB), 
k Nearest Neighbour (kNN), Deep Forest (DF), and Support Vector Machine (SVM) 
classifiers. These classifiers and their initial parameter sets can be observed from table as 
follows, 

Classifier Parameter Sets 

Naïve Bayes Priors These are set to variance levels of 
training set samples 

Smoothing Value (𝑆 ), is initially set to 1, 
and tuned by the EHO process 

kNN k = 1, and tuned by the EHO process 

Deep Forest Number of Estimators (𝑁 ), initially set as 
number of features, and tuned by the EHO 
process 

Max Depth (𝑀 ), initially set as 1, and 

later modified by the EHO process 

SVM Regularization Coefficient (𝐶), initially 
setup as 1, and modified by the EHO process 

Tolerance (𝑡𝑜𝑙), initially setup as 0.0001, 
later modified by the EHO process 

Table 1. Classifiers along with their parameter sets 

Based on these parameter sets, missing value samples are classified into 1 of N categories. The 
average value of missing parameters (MPV) is evaluated via equation 1, 

𝑀𝑃𝑉 =
𝑁𝑀𝑉𝑃

𝑁
… (1) 

Where, 𝑁𝑀𝑉𝑃 & 𝑁  represents values of parameters that are not missing in the dataset, and 
total samples present in the identified class. Based on this value of 𝑀𝑃𝑉, accuracy of classifier 
is estimated, and kept for future reference purposes. If the accuracy is observed to be lower 
than a specified threshold, then an EHO based optimization model is activated, which works 
as per the following process, 
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 To initialize the optimization model, setup following EHO constants, 
o EHO iterations for which Herds will be checked and reconfigured (𝑁 ) 
o EHO Herds which will be used for optimization process (𝑁 ) 
o Rate at which Herds will learn from each other (𝐿 ) 
o Current parameters for each of the classifier obtained from table 1, which has to be 
optimized by EHO process 

 Once these parameters are setup, then generate 𝑁  solutions as per the following 
process, 
o Stochastically modify values for each of the classifier parameters via equations, 2, 3, 4, 
5, 6 and 7 as follows, 

𝑆 = 𝑆 (𝑂𝑙𝑑) ± 𝑆𝑇𝑂𝐶𝐻
𝐿

2
, 𝐿 … (2) 

Where, 𝑆𝑇𝑂𝐶𝐻 represents a Markovian process used for generation of stochastic number sets. 

𝑘 = 𝑘(𝑜𝑙𝑑) ± 1 … (3) 

Where, increment (+), and decrement (-) operators are selected stochastically for individual 
solution sets. 

𝑁 = 𝑁 (𝑂𝑙𝑑) ∗ 𝑆𝑇𝑂𝐶𝐻
𝐿

2
, 2 ∗ 𝐿 … (4) 

𝑀 = 𝑀 (𝑂𝑙𝑑) ± 1 … (5) 

𝐶 = 𝐶(𝑂𝑙𝑑) ∗ 𝑆𝑇𝑂𝐶𝐻
𝐿

2
, 𝐿 … (6) 

𝑡𝑜𝑙 = 𝑡𝑜𝑙(𝑜𝑙𝑑) ± 𝑆𝑇𝑂𝐶𝐻 𝑡𝑜𝑙 ∗
𝐿

2
, 𝑡𝑜𝑙 ∗ 𝐿 … (7) 

o Based on these values of classifier parameters, fitness levels are estimated for each Herd 
via equation 8, 

𝑓 =
𝐴 + 𝑃 + 𝑅

3
… (8) 

Where, 𝐴, 𝑃, 𝑅 represents accuracy, precision & recall levels for each of the classifier entities, 
and is estimated via equations 9, 10 and 11, 

𝐴 =
𝑡 + 𝑡

𝑡 + 𝑡 + 𝑓 + 𝑓
… (9) 
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𝑃 =
𝑡

𝑡 + 𝑡
… (10) 

𝑅 =
𝑡 + 𝑓

𝑡 + 𝑡 + 𝑓 + 𝑓
… (11) 

Where, 𝑡 , 𝑡 , 𝑓  & 𝑓  represents values of true positive, true negative, false positive, and false 

negative under real-time use cases. 

o Repeat this process for all Herds, which assists in generation of 𝑁  different solution 
sets. 

 Once all Herd configurations (solution sets) are generated, then estimate Herd solution 
fitness threshold via equation 12, 

𝑓 =
1

𝑁
𝑓 ∗ 𝐿 … (12) 

 Herds that showcase 𝑓 < 𝑓  are reconfigured via equations, 2, 3, 4, 5, 6, & 7; while 
other Herds are not modified during consecutive iterations. 

 At the end of each iteration, Herd with maximum fitness level is marked as ‘Matriarch’ 
Herd, and is used to modify the learning rate via equation 13, 

𝐿 (𝑁𝑒𝑤) = 𝐿 (𝑂𝑙𝑑) ±
𝑓(𝑀𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ)

∑ 𝑓
… (13) 

Where, 𝑓(𝑀𝑎𝑡𝑟𝑖𝑎𝑟𝑐ℎ) represents highest fitness levels, and the rate is incremented if current 
solution is better than previous, while rate is reduced if current solution has lower performance 
than previous. Once all iterations are completed, then select solution with maximum fitness 
levels, and use its configurations if accuracy with this solution is higher than current accuracy 
levels. Due to which, the proposed model is able to improve classification performance under 
different use cases. This performance is evaluated, and compared with standard models in the 
next section of this text.  

3. Result & Comparison 

The proposed model uses a combination of Naïve Bayes (NB), k Nearest Neighbours (kNN), 
Support Vector Machine (SVM), and Deep Forest (DF) classifiers in order to estimate correct 
class for missing value samples. The values of this class are averaged to estimate current 
missing value sets. Performance of this classifier is improved via a EHO based optimization 
process, which assists in identification of optimal hyperparameters that can achieve higher 
accuracy under different data samples. This accuracy was estimated for Missing Value Dataset 
from Kaggle (https://www.kaggle.com/code/alexisbcook/missing-values/data), Brittleness 
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Index Dataset (https://openmv.net/info/brittleness-index), Class Grades Dataset 
(https://openmv.net/info/class-grades), and Raw Material Properties Datasets 
(https://openmv.net/info/raw-material-properties) samples. Each of these sets were aggregated 
to form a total of 500k data samples, out of which 70% were used for training, while 15% each 
were used for validation & testing purposes. Based on this strategy, the accuracy of missing 
value identification was estimated w.r.t. Test Set Samples (TSS), and compared with TSM [4], 
LME GNB [9], and GAN Bi LSTM [25] in table 2 as follows, 

TSS A (%) 

TSM [4] 

A (%) 

LME GNB [9] 

A (%) 

GAN Bi LSTM [25] 

A (%) 

MVI BPM 

833 79.94 79.45 81.15 85.32 

1250 81.24 80.64 82.39 86.61 

1667 82.29 81.60 83.38 87.66 

2500 83.14 82.40 84.20 88.52 

2917 83.88 83.13 84.95 89.31 

3333 84.63 83.91 85.74 90.14 

3750 85.48 84.78 86.62 91.07 

4167 86.40 85.69 87.56 92.05 

4583 87.33 86.60 88.49 93.02 

5000 88.23 87.48 89.38 93.97 

5417 89.13 88.36 90.27 94.92 

5833 90.09 89.28 91.13 95.86 

6250 91.10 90.25 91.95 96.74 

6667 92.11 91.21 92.79 97.64 
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7083 93.07 92.12 93.71 98.60 

7500 93.92 92.96 94.64 99.57 

Table 2. Accuracy evaluation of different missing value models 

Based on this estimation, and figure 2, it was observed that the proposed model showcased 
5.5% higher accuracy than TSM [4], 6.4% higher accuracy than LME GNB [9], 4.9% higher 
accuracy than GAN Bi LSTM [25] under different use cases. The reason for this accuracy 
enhancement is use of accuracy during tuning the classifier hyperparameter sets. 

 

Figure 2. Accuracy evaluation of different missing value models 

Similar performance was evaluated for precision levels, and can be observed from table 3 as 
follows, 

TSS P (%) 

TSM [4] 

P (%) 

LME GNB 
[9] 

P (%) 

GAN Bi 
LSTM [25] 

P (%) 

MVI BPM 

833 75.90 76.48 78.60 81.23 

1250 77.09 77.63 79.82 82.45 

1667 78.05 78.56 80.81 83.44 

2500 78.83 79.34 81.63 84.27 

2917 79.53 80.04 82.36 85.02 
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3333 80.26 80.79 83.11 85.81 

3750 81.07 81.62 83.95 86.70 

4167 81.95 82.50 84.86 87.63 

4583 82.82 83.37 85.76 88.55 

5000 83.67 84.22 86.64 89.46 

5417 84.52 85.07 87.52 90.38 

5833 85.41 85.96 88.44 91.35 

6250 86.36 86.90 89.42 92.36 

6667 87.30 87.83 90.40 93.36 

7083 88.19 88.71 91.31 94.29 

7500 88.99 89.52 92.15 95.15 

Table 3. Precision evaluation of different missing value models 

Based on this estimation, and figure 3, it was observed that the proposed model showcased 
6.5% higher precision than TSM [4], 5.5% higher precision than LME GNB [9], 2.9% higher 
precision than GAN Bi LSTM [25] under different use cases. The reason for this precision 
enhancement is use of this parameter during the EHO tuning process which assists in 
identification of efficient parameters for each of the classifiers. 
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Figure 3. Precision evaluation of different missing value models 

Similar performance was evaluated for recall levels, and can be observed from table 4 as 
follows, 

TSS R (%) 

TSM [4] 

R (%) 

LME GNB 
[9] 

R (%) 

GAN Bi 
LSTM [25] 

R (%) 

MVI BPM 

833 77.92 77.96 79.87 83.27 

1250 79.16 79.13 81.10 84.53 

1667 80.17 80.08 82.09 85.55 

2500 80.99 80.87 82.91 86.39 

2917 81.71 81.59 83.66 87.17 

3333 82.45 82.35 84.42 87.98 

3750 83.28 83.20 85.29 88.88 

4167 84.18 84.10 86.21 89.84 

4583 85.08 84.99 87.12 90.79 
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5000 85.95 85.85 88.01 91.72 

5417 86.82 86.71 88.90 92.66 

5833 87.75 87.62 89.84 93.66 

6250 88.73 88.57 90.83 94.70 

6667 89.70 89.52 91.81 95.72 

7083 90.63 90.42 92.74 96.68 

7500 91.45 91.24 93.59 97.56 

Table 4. Recall evaluation of different missing value models 

Based on this estimation, and figure 4, it was observed that the proposed model showcased 
5.9% higher recall than TSM [4], 6.2% higher recall than LME GNB [9], 4.5% higher recall 
than GAN Bi LSTM [25] under different use cases. The reason for this recall enhancement is 
use of ensemble classifier, and inclusion of recall during the EHO tuning process which assists 
in identification of efficient parameters for each of the classifiers. 

 

Figure 4. Recall evaluation of different missing value models 
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Similar performance was evaluated for computational delay levels, and can be observed from 
table 5 as follows, 

TSS D (ms) 

TSM [4] 

D (ms) 

LME GNB 
[9] 

D (ms) 

GAN Bi 
LSTM [25] 

D (ms) 

MVI BPM 

833 1.60 1.60 1.56 1.33 

1250 1.97 1.97 1.92 1.63 

1667 2.33 2.34 2.28 1.92 

2500 2.70 2.70 2.64 2.21 

2917 3.08 3.08 3.00 2.51 

3333 3.49 3.49 3.41 2.85 

3750 3.97 3.97 3.88 3.25 

4167 4.53 4.53 4.42 3.70 

4583 5.15 5.16 5.03 4.21 

5000 5.81 5.82 5.68 4.72 

5417 6.45 6.46 6.30 5.21 

5833 7.01 7.02 6.85 5.63 

6250 7.48 7.49 7.30 5.99 

6667 7.89 7.90 7.70 6.32 

7083 8.31 8.31 8.11 6.66 
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7500 8.79 8.79 8.58 7.05 

Table 5. Delay evaluation for different missing value models 

Based on this estimation, and figure 5, it was observed that the proposed model showcased 
10.5% higher speed than TSM [4] and LME GNB [9], and 9.5% higher speed than GAN Bi 
LSTM [25] under different use cases. The reason for this delay enhancement is selection of 
optimal tuning parameters, and use of ensemble classifier which assists in identification of 
efficient parameters for each of the classifiers. 

 

Figure 5. Delay evaluation for different missing value models 

Due to these optimizations, the proposed model is capable of low-error, high-speed, high 
precision, and better recall performance, which makes it useful for a wide variety of missing 
value identification applications. 

4. Conclusion & future scope 

The proposed model uses a combination of Naïve Bayes (NB), k Nearest Neighbours (kNN), 
Support Vector Machine (SVM), and Deep Forest (DF) classifiers in order to estimate correct 
class for missing value samples. The values of this class are averaged to estimate current 
missing value sets. Performance of this classifier is improved via a EHO based optimization 
process, which assists in identification of optimal hyperparameters that can achieve higher 
accuracy under different data samples. The model’s performance was evaluated on different 
datasets, and it was observed that the proposed model showcased 5.5% higher accuracy than 
TSM [4], 6.4% higher accuracy than LME GNB [9], 4.9% higher accuracy than GAN Bi LSTM 
[25] under different use cases. The reason for this accuracy enhancement is use of accuracy 
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during tuning the classifier hyperparameter sets. Based on precision estimation, it was observed 
that the proposed model showcased 6.5% higher precision than TSM [4], 5.5% higher precision 
than LME GNB [9], 2.9% higher precision than GAN Bi LSTM [25] under different use cases. 
The reason for this precision enhancement is use of this parameter during the EHO tuning 
process which assists in identification of efficient parameters for each of the classifiers. Based 
on recall evaluation, it was observed that the proposed model showcased 5.9% higher recall 
than TSM [4], 6.2% higher recall than LME GNB [9], 4.5% higher recall than GAN Bi LSTM 
[25] under different use cases. The reason for this recall enhancement is use of ensemble 
classifier, and inclusion of recall during the EHO tuning process which assists in identification 
of efficient parameters for each of the classifiers. Based on computational delay estimation, it 
was observed that the proposed model showcased 10.5% higher speed than TSM [4] and LME 
GNB [9], and 9.5% higher speed than GAN Bi LSTM [25] under different use cases. The 
reason for this delay enhancement is selection of optimal tuning parameters, and use of 
ensemble classifier which assists in identification of efficient parameters for each of the 
classifiers. Due to these optimizations, the proposed model is capable of low-error, high-speed, 
high precision, and better recall performance, which makes it useful for a wide variety of 
missing value identification applications. 
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