Volume 25 Issue 04, 2022

ISSN: 1005-3026

https://dbdxxb.cn/

Original Research Paper

N – GENERATED INTUITIONISTIC FUZZY TRANSLATION AND FUZZY MULTIPLICATION IN Z – ALGEBRA

Dr. M. Mary JansiRani¹, Dr.K.Sampathkumar ² A. Alphonse Anitha³

^{1,3}Assistant Professor, Department of Mathematics, Holy Cross College (Autonomous),
 Affiliated to Bharathidasan university, Tiruchirappalli-620 002
 ²Associate Professor, Department of Mathematics, Roever Engineering College,
 Perambalur-621220, Tamil Nadu.

anthuvanjansi@gmail.com¹, sampathmath81@gmail.com², anijera1983@gmail.com³ Corresponding author- Dr. M. Mary JansiRani¹

Abstract: In this paper, we evaluated the idea of N-Generated Fuzzy & Intuitionistic fuzzy Translation and Multiplication in Z-Algebra. For this, we examined some proportions of Fuzzy & Intuitionistic fuzzy Translation and Multiplication in Z-Algebra and we have achieved certain outcomes.

Keywords: Z-Algebras, Z-Ideal, Fuzzy Z-Ideal, Fuzzy Z-Sub algebra, n- generated Fuzzy Z-ideal, n- generated Fuzzy Z-subalgebra

Introduction: In 1965, the concept of fuzzy sets[8] inspired Zadeh L A. Several academics looked into the possibility of generalising a fuzzy subset. Fuzzy mathematics arose from the study of fuzzy subsets and their applications in many mathematical settings. Kyoung Ja Lee, Young Bae Jun and Myung Im Doh[4] established the concept of fuzzy translation and fuzzy multiplication of BCK-algebras in 2009. BCK-algebras and BCI-algebras are algebras derived from the BCK and BCI logics, respectively. Many new algebras have been produced since then. The Z-algebras, discovered by Chandramouleeswaran.M, Muralikrishna.P, Sujatha.K and Sabarinathan.S[2] in 2017, are one such class of algebra developed from propositional logic. Sowmiya.S and Jeyalakshmi.P[3] introduced the new concept on Fuzzy Z-Ideals in Z-Algebra in 2019. In 2014, Abu Ayub Ansari and Chandramouleeswaran.M [1] proposed the idea of fuzzy translation of fuzzy β -ideals of β-algebras. Priya and Ramachandran.T [5] introduced the new fuzzy translation and multiplication notation for PS-algebras in 2014. The notion of fuzzy translation and multiplication on B-algebras was introduced by Prasanna.A, Premkumar.M, and Ismail Mohideen.S[6] in 2018. In 2019, Prasanna.A, Premkumar.M, and Ismail Mohideen.S [7] proposed the new concept of fuzzy translation and fuzzy multiplication of BG-Algebra. In this paper, we explored the concepts of fuzzy translation and fuzzy multiplication on Z-algebras, as well as some of the Z-algebra's features.

This paper we deals with four sections. The first section covers the fundamental definitions of BCK&BCI – Algebras, Z-Algebra and theorems on Fuzzy Translation and Fuzzy Multiplication in Z-Algebra. The second section deals with the theorems in Intuitionistic Fuzzy Translation and Multiplication in Z-Algebra, as well as some additional definitions. In third section, we briefed about the definitions and theorems on N-Generated Fuzzy Translation and Multiplication in Z-Algebra. In fourth section, we covered the

Submitted: 15/09/2022 **Accepted**: 17/11/2022

definitions and theorems on N-Generated Intuitionistic Fuzzy Translation and Multiplication in Z-Algebra.

Preliminaries

1. FUZZY TRANSLATION AND FUZZY MULTIPLICATION IN Z – ALGEBRA

Definition 1.1

Let \mathbb{P} be a non-empty set with nullary operation 0 and let * be a binary operation is known as BCK – Algebra. If it fulfils the following criteria for any $p, q, r \in \mathbb{P}$,

$$(A-1) (p*q)*(p*r) \le (r*q)$$

$$(A-2) p * (p * q) \leq q$$

$$(A-3) p \leq p$$

(A-4)
$$p \le q$$
 and $q \le p \Rightarrow p = q$

(A-5)
$$0 \le p \Rightarrow p = 0$$
, where $p \le q$ is determined by $p * q = 0$

Definition 1.2

Let \mathbb{P} be a non-empty set with nullary operation 0 and let * be a binary operation is known as BCI – Algebra. If it fulfils (A-1), (A-2),(A-3), (A-4) and the following criteria for any $p,q,r \in \mathbb{P}$,

$$i.p \le 0 \Rightarrow p = 0$$
, where $p \le q$ is determined by $p * q = 0$

Definition 1.3

Let \mathbb{P} be a non-empty set with nullary operation 0 and * be a binary operation is known as \mathbb{Z} – Algebra. If it fulfils the following criteria for any $p, q \in \mathbb{P}$,

$$i.p * 0 = 0$$

$$ii.0 * p = p$$

$$iii.p*p=p$$

iv.
$$p * q = q * p$$
 when $p \neq 0 \& q \neq 0$ for all $p, q \in \mathbb{P}$

Example 1.3.1

The following table is for the set $\mathbb{P} = \{0, a, b, c\}$

*	0	а	в	С
0	0	а	в	С
а	0	а	0	а
в	0	0	в	в
С	0	а	в	С

Then $(\mathbb{P};*,0)$ is a \mathbb{Z} – Algebra.

Example 1.3.2

The below table shows $\mathbb{P} = \{0, a, b, c\}$ is a \mathbb{Z} – algebra.

*	0	a	b	c
0	0	a	b	c
a	0	a	С	b
ь	0	c	b	a

c 0 b a c

Definition 1.4

Let \mathbb{Q} is as Z – sub-algebra of $\mathbb{P} \Leftrightarrow \mathbb{Q}$ be a non-empty subset of Z – Algebra for all $p,q\in\mathbb{Q}$.

Definition 1.5

The subset of \mathbb{P} and \mathbb{R} is known as Z – Ideal of the set \mathbb{P} of Z -Algebra with the following conditions are fulfils,

 $i.0 \in \mathbb{R}$

ii.
$$p * q \in \mathbb{R}$$
 and $q \in \mathbb{R} \Rightarrow p \in \mathbb{R}$ for all $p, q \in \mathbb{R}$

Definition 1.6

Let ξ be a fuzzy set which belongs to \mathbb{P} . Then ξ is known as fuzzy Z – bi-ideal, if the following criteria is fulfilled. $\xi(p, \sigma, q) \ge \min \{\xi(p), \xi(q)\}$ for any $p, q, \sigma \in \mathbb{P}$.

Definition 1.7

If $\theta(p * q) \ge \min \{\theta(p), \theta(q)\} \forall p, q \in \mathbb{P}$ then θ is known as fuzzy sub-algebra on \mathbb{P} , on Z – Algebra.

Definition 1.8

Let θ be a fuzzy set in \mathbb{P} is termed as fuzzy BCK – Ideal of \mathbb{P} . If it satisfies the following criteria,

$$i.\theta(0) \ge \theta(p)$$

$$ii.\theta(p) \ge min\{\theta(p*q), \theta(q)\}$$

Definition 1.9

Let a fuzzy set ξ in $\mathbb P$ is known as fuzzy Z – Ideal of $\mathbb P$.If the following criteria are satisfied,

$$i.\xi(0) \ge \xi(p)$$

$$ii.\xi(p) \ge min\{\xi(p*q), \xi(q)\}$$

Theorem 1.10

Let σ is a fuzzy subset of \mathbb{P} , then the γ – Fuzzy Translation $\sigma_{\gamma}^{U}(p)$ of σ be a fuzzy Z – Ideal of \mathbb{P} , $\forall \gamma \in [0, U]$

Proof:

Let σ be a fuzzy Z – Ideal of \mathbb{P} with $\gamma \in [0, U]$

To Prove: σ is a fuzzy Z – Ideal of \mathbb{P} .

Claim (1):

$$\sigma_{\gamma}^{U}(0) \iff \sigma(0) + \gamma$$

$$\geq \sigma(p) + \gamma$$

$$= \sigma_{\gamma}^{U}(p)$$

Claim (2):

$$\sigma_{\gamma}^{U}(p) \Leftrightarrow \sigma(p) + \gamma$$

$$\geq \{\sigma(p*q) \land \sigma(q)\} + \gamma$$

$$\geq \{(\sigma(p*q) + \gamma) \land (\sigma(q) + \gamma)\}$$

$$\geq \{\sigma_{\gamma}{}^{U}(p*q) \wedge \sigma_{\gamma}{}^{U}(q)\}$$

$$\sigma_{\mathcal{V}}^{U}(p) \geq \{\sigma_{\mathcal{V}}^{U}(p * q) \land \sigma_{\mathcal{V}}^{U}(q)\}$$

Hence σ is a fuzzy Z – Ideal of \mathbb{P} .

Theorem 1.11

Let a fuzzy Z – Ideal σ of \mathbb{P} be a Z – algebra, then σ_{γ}^{U} be the γ – FT of σ is termed to be a fuzzy Z - sub-algebra of \mathbb{P} and for any $\gamma \in [0, U]$.

Proof:

Let $p, q \in \mathbb{P}$

We have,

$$\sigma_{\gamma}^{U}(p * q) = \sigma(p * q) + \gamma$$

$$\geq \{\sigma(q * (p * q)) \land \sigma(q)\} + \gamma$$

$$= \{\sigma(p * (q * q)) \land \sigma(q)\} + \gamma$$

$$\geq \{\sigma(p) \land \sigma(q)\} + \gamma$$

$$\geq \{(\sigma(p) + \gamma) \land (\sigma(q) + \gamma)\}$$

$$= \{\sigma_{\gamma}^{U}(p) \land \sigma_{\gamma}^{U}(q)\}$$

Therefore σ_{γ}^{U} is a fuzzy Z – algebra of \mathbb{P} .

Theorem 1.12

Let σ_{γ}^{U} of σ be a γ – Fuzzy Translation then for all $\gamma \in [0, U]$. Then σ is a fuzzy Z – subalgebra of \mathbb{P} .

Proof:

We assume that σ_{γ}^{U} of σ be a fuzzy Z – Ideal of \mathbb{P} . Then we have

$$\begin{split} \sigma(\mathcal{P} * \mathcal{Q}) + \gamma &= \sigma_{\gamma}{}^{U}(\mathcal{P} * \mathcal{Q}) \\ &\geq \left\{ \sigma_{\gamma}{}^{U}(\mathcal{P} * (\mathcal{P} * \mathcal{Q})) \wedge \sigma_{\gamma}{}^{U}(\mathcal{Q}) \right\} \\ &= \left\{ \sigma_{\gamma}{}^{U}((\mathcal{P} * \mathcal{P}) * \mathcal{Q}) \wedge \sigma_{\gamma}{}^{U}(\mathcal{Q}) \right\} \\ &\geq \left\{ \sigma_{\gamma}{}^{U}(\mathcal{P}) \wedge \sigma_{\gamma}{}^{U}(\mathcal{Q}) \right\} \\ &= \left\{ (\sigma(\mathcal{P}) + \gamma) \wedge (\sigma(\mathcal{Q}) + \gamma) \right\} \end{split}$$

 $= \{ \sigma(p) \land \sigma(q_i) \} + \gamma$

Which implies $\sigma(p * q) \ge {\sigma(p) \land \sigma(q)}$

Therefore σ is fuzzy Z – sub-algebra of \mathbb{P} .

Theorem 1.13

Let a fuzzy subset σ of \mathbb{P} such that the γ – Fuzzy Multiplication $\sigma_{\gamma}^{V}(p)$ of σ is said to be fuzzy Z – Ideal of \mathbb{P} and $\gamma \in [0,1]$. Then σ be a fuzzy Z – Ideal of \mathbb{P} .

Let
$$\sigma_{\gamma}^{V}$$
 is a fuzzy Z – Ideal of \mathbb{P} for all $\gamma \in [0,1]$.Let $p,q \in \mathbb{P}$. We now have, i. $\gamma \sigma(p) = \sigma_{\gamma}^{V}(0)$
 $\geq \sigma_{\gamma}^{V}(p)$
 $= \gamma \sigma(p)$ which implies $\sigma(0) \geq \sigma(p)$
ii. $\gamma \sigma(p) = \sigma_{\gamma}^{V}(p)$
 $\geq \{\sigma_{\gamma}^{V}(p*q) \land \sigma_{\gamma}^{V}(q)\}$
 $= \{(\gamma \sigma(p*q)) \land (\gamma \sigma(q))\}$

=
$$\gamma \{ \sigma(p * q) \land \sigma(q) \}$$

which implies $\sigma(p) \ge {\sigma(p * q) \land \sigma(q)}$

Therefore σ is a fuzzy Z-Ideal of \mathbb{P} .

Theorem 1.14

A σ is a fuzzy Z – ideal of \mathbb{P} . Then the γ - FM $\sigma_{\gamma}^{V}(p)$ of σ is a fuzzy Z – Ideal of \mathbb{P} , for all $\gamma \in [0,1]$.

Proof:

If σ is a fuzzy Z – Ideal of \mathbb{P} and $\gamma \in [0,1]$.

We now have

$$i.\sigma_{\nu}^{V}(0) = \gamma \sigma(p)$$

$$\geq \gamma \sigma(p)$$

$$= \sigma_{\nu}^{V}(p)$$

$$\sigma_{\gamma}^{V}(0) \geq \sigma_{\gamma}^{V}(p)$$

$$ii.\sigma_{\nu}^{V}(p) = \gamma \sigma(p)$$

$$\geq \gamma \{ \sigma(p * q_i) \land \sigma(q_i) \}$$

$$= \gamma \{ \sigma(p * q) \land \sigma(q) \}$$

$$= \{ (\gamma \sigma(p * q)) \land (\gamma \sigma(q)) \}$$

which implies
$$\sigma_{\nu}^{V}(p) \geq {\{\sigma_{\nu}^{V}(p * q) \land \sigma_{\nu}^{V}(q)\}}$$

Therefore, σ_{ν}^{V} of σ is a fuzzy Z – Ideal of \mathbb{P} and then for all $p, q \in [0,1]$

Theorem 1.15

If γ - Fuzzy Multiplication $\sigma_{\gamma}{}^{V}(p)$ of a fuzzy Z – sub-algebra σ of \mathbb{P} . Then σ be a fuzzy Z – sub-algebra of \mathbb{P} and let $\gamma \in [0,1]$.

Proof:

Let $p, q \in \mathbb{P} \& \forall \gamma \in [0,1]$

$$\sigma(p * q) \ge {\sigma(p) \land \sigma(q)}$$

We have, $\sigma_{\gamma}^{V}(p * q) = \gamma \sigma(p * q)$

$$\geq \gamma \{ \sigma(p) \land \sigma(q) \}$$

$$\geq \gamma \sigma(p) \wedge \gamma \sigma(q)$$

which implies $\sigma_{\gamma}^{V}(p * q) \ge \sigma_{\gamma}^{V}(p) \wedge \sigma_{\gamma}^{V}(q)$

Hence, σ_{γ}^{V} is fuzzy Z – sub-algebra of \mathbb{P} .

Theorem 1.16

Let a fuzzy Z – sub-algebra of \mathbb{P} be σ and if γ - FM $\sigma_{\gamma}^{V}(p)$ of σ , then for every fuzzy subset σ of \mathbb{P} and for any $\gamma \in [0,1]$.

Proof

Let we assume $\sigma_{\nu}^{V}(p)$ of σ is fuzzy Z – sub-algebra.

We know that $\gamma \in [0,1]$.

$$\gamma \sigma(p * q) = \sigma_{\nu}^{V}(p * q)$$

$$\geq \sigma_{\gamma}^{V}(p) \wedge \sigma_{\gamma}^{V}(q)$$

$$= \{ \gamma \sigma(p) \wedge \gamma \sigma(q_i) \}$$

=
$$\gamma \{ \sigma(p) \land \sigma(q) \}$$

$$\Rightarrow \sigma(p * q_i) \ge \sigma(p) \land \sigma(q_i)$$

 σ is fuzzy Z – sub-algebra of \mathbb{P} .

2. INTUITIONISTIC FUZZY TRANSLATION AND FUZZY MULTIPLICATION IN Z - ALGEBRA

In a non-empty set \mathbb{P} , an intuitionistic fuzzy set \mathbb{P} is an object with, $\mathbb{P} = \{(p, \varphi_{\mathbb{A}}(p), \delta_{\mathbb{A}}(p) \mid p \in \mathbb{P}\}$ where the parameters $\varphi_{\mathbb{A}} : \mathbb{P} \to [0,1]$ and $\delta_{\mathbb{A}} : \mathbb{P} \to [0,1]$ represents the degree of membership and non-membership correspondingly, $0 \leq \varphi_{\mathbb{A}}(p), \delta_{\mathbb{A}}(p) \leq 1$ for all $p \in \mathbb{P}$. An ordered pair $(\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ in $I^{X} \times I^{X}$ defined to an Intuitionistic fuzzy set $\mathbb{A} = \{(p, \varphi_{\mathbb{A}}(p), \delta_{\mathbb{A}}(p) \mid p \in \mathbb{P}\}$ in \mathbb{P} . For the Intuitionistic Fuzzy Set $\mathbb{A} = \{(p, \varphi_{\mathbb{A}}(p), \delta_{\mathbb{A}}(p) \mid p \in \mathbb{P}\}$ we will use the symbol $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$.

Definition 2.1

Let $\mathbb{A} = (\mathbb{P}, \varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ in \mathbb{P} be an intuitionistic fuzzy set on \mathbb{Z} - Algebra. If it fulfils the following criteria,

$$i.\varphi_{\mathbb{A}}(0) \ge \varphi_{\mathbb{A}}(p)$$

$$ii.\delta_{\mathbb{A}}(0) \leq \delta_{\mathbb{A}}(p)$$

iii.
$$\varphi_{\mathbb{A}}(p) \ge \min \{ \varphi_{\mathbb{A}}(p * q), \varphi_{\mathbb{A}}(q) \}$$

iv.
$$\delta_{\mathbb{A}}(p) \leq \max\{\delta_{\mathbb{A}}(p * q), \delta_{\mathbb{A}}(q)\}$$

for all
$$p, q \in \mathbb{P}$$

Then it is known as intuitionistic fuzzy Z – Ideal of \mathbb{P} .

Definition 2.2

Let the set $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ is known as intuitionistic fuzzy sub-algebra on \mathbb{P} .

$$\varphi_{\mathbb{A}}(p * q) \ge \min \{\varphi_{\mathbb{A}}(p), \varphi_{\mathbb{A}}(q)\}$$

$$\delta_{\mathbb{A}}(p * q) \leq \max\{\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q)\}$$

for all $p, q \in \mathbb{P}$.

where $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ in \mathbb{P} be an intuitionistic fuzzy set on Z - Algebra.

Theorem 2.3

If $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ be an intuitionistic fuzzy subset of \mathbb{P} , then γ – Intuitionistic Fuzzy Translation $\mathbb{A}^U_{\gamma}(p) = ((\varphi_{\mathbb{A}})^U_{\gamma}(p), (\delta_{\mathbb{A}})^U_{\gamma}(p))$ of \mathbb{A} is an intuitionistic fuzzy \mathbb{Z} – Ideal of \mathbb{P} , $\forall \gamma \in [0, U]$

Proof:

Let A be an intuitionistic fuzzy subset of P with let $\gamma \in [0, U]$

i.
$$(\varphi_{\mathbb{A}})^{U}_{\gamma}(0) \Leftrightarrow \varphi_{\mathbb{A}}(0) + \gamma \geq \varphi_{\mathbb{A}}(p) + \gamma$$

$$=(\varphi_{\mathbb{A}})^{U}_{\nu}(p)$$

ii.
$$(\delta_{\mathbb{A}})^{U}_{\gamma}(0) \Leftrightarrow \delta_{\mathbb{A}}(0) - \gamma$$

$$\leq \delta_{\mathbb{A}}(p) - \gamma$$

$$=(\delta_{\mathbb{A}})^{U}_{\nu}(p)$$

iii.
$$(\varphi_{\mathbb{A}})^{U}_{\nu}(p) \Leftrightarrow \varphi_{\mathbb{A}}(p) + \gamma$$

$$\geq \min\{\varphi_{\mathbb{A}}(p*q), \varphi_{\mathbb{A}}(q)\} + \gamma$$

$$= \min \left\{ (\varphi_{\mathbb{A}}(p * q) + \gamma), (\varphi_{\mathbb{A}}(q) + \gamma) \right\}$$

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

$$\begin{split} &(\varphi_{\mathbb{A}})^{U}_{\gamma}(\mathcal{P}) \geq \min\left\{ (\varphi_{\mathbb{A}})^{U}_{\gamma}(\mathcal{P} * q) , (\varphi_{\mathbb{A}})^{U}_{\gamma}(q) \right\} \\ &\mathrm{iv.}(\delta_{\mathbb{A}})^{U}_{\gamma}(\mathcal{P}) \iff \delta_{\mathbb{A}}(\mathcal{P}) - \gamma \\ &\leq \max\{\delta_{\mathbb{A}}(\mathcal{P} * q) , \delta_{\mathbb{A}}(q) \} - \gamma \\ &= \max\left\{ (\delta_{\mathbb{A}}(\mathcal{P} * q) - \gamma), (\delta_{\mathbb{A}}(q) - \gamma) \right\} \\ &(\delta_{\mathbb{A}})^{U}_{\gamma}(\mathcal{P}) \leq \max\left\{ (\delta_{\mathbb{A}})^{U}_{\gamma}(\mathcal{P} * q) , (\delta_{\mathbb{A}})^{U}_{\gamma}(q) \right\} \end{split}$$

Hence $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ is an intuitionistic fuzzy \mathbb{Z} – Ideal of \mathbb{P} .

Theorem 2.4

If an intuitionistic fuzzy Z – Ideal of \mathbb{P} is \mathbb{A} , then $\mathbb{A}^U_{\gamma} = ((\varphi_{\mathbb{A}})^U_{\gamma}, (\delta_{\mathbb{A}})^U_{\gamma})$ be γ –Intuitionistic FT of \mathbb{A} is Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} , then for any $\gamma \in [0, U]$.

Proof:

We have,
$$(\varphi_{\mathbb{A}})^{U}_{\gamma}(p*q) = \{(\varphi_{\mathbb{A}}(p*q) + \gamma)$$

$$\geq \min\{\varphi_{\mathbb{A}}(q*(p*q)), \varphi_{\mathbb{A}}(q)\} + \gamma$$

$$= \min\{\varphi_{\mathbb{A}}(p*(q*q)), \varphi_{\mathbb{A}}(q)\} + \gamma$$

$$\geq \min\{\varphi_{\mathbb{A}}(p), \varphi_{\mathbb{A}}(q)\} + \gamma$$

$$\geq \min\{(\varphi_{\mathbb{A}}(p) + \gamma), (\varphi_{\mathbb{A}}(q) + \gamma)\}$$

$$= \min\{(\varphi_{\mathbb{A}})^{U}_{\gamma}(p), (\varphi_{\mathbb{A}})^{U}_{\gamma}(q)\}$$

$$(\delta_{\mathbb{A}})^{U}_{\gamma}(p*q) = \{(\delta_{\mathbb{A}}(p*q) - \gamma)$$

$$\leq \max\{\delta_{\mathbb{A}}(q*(p*q)), \delta_{\mathbb{A}}(q)\} - \gamma$$

$$\leq \max\{\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q)\} - \gamma$$

$$\leq \max\{(\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q)) - \gamma), (\delta_{\mathbb{A}}(q) - \gamma)\}$$

$$= \max\{(\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q)), \delta_{\mathbb{A}}(q)\}$$

Therefore $\mathbb{A}^U_{\nu} = ((\varphi_{\mathbb{A}})^U_{\nu}, (\delta_{\mathbb{A}})^U_{\nu})$ is Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} .

Theorem 2.5

Let $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ be an Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} and then let \mathbb{A}^U_{γ} of a γ – Intuitionistic Fuzzy Translation \mathbb{A} , $\forall \gamma \in [0, U]$. Then \mathbb{A} be an Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} .

Proof:

$$\varphi_{\mathbb{A}}(p * q) + \gamma = (\varphi_{\mathbb{A}})^{U}_{\gamma}(p * q)$$

$$\geq \min\{(\varphi_{\mathbb{A}})^{U}_{\gamma}(p * (p * q)), (\varphi_{\mathbb{A}})^{U}_{\gamma}(q)\}$$

$$= \min\{(\varphi_{\mathbb{A}})^{U}_{\gamma}((p * p) * q), (\varphi_{\mathbb{A}})^{U}_{\gamma}(q)\}$$

$$\geq \min\{(\varphi_{\mathbb{A}})^{U}_{\gamma}(p), (\varphi_{\mathbb{A}})^{U}_{\gamma}(q)\}$$

$$\geq \min\{(\varphi_{\mathbb{A}}(p) + \gamma), (\varphi_{\mathbb{A}}(q) + \gamma)\}$$

$$= \min\{(\varphi_{\mathbb{A}}(p), \varphi_{\mathbb{A}}(q))\} + \gamma$$

$$\varphi_{\mathbb{A}}(p * q) \geq \min\{(\varphi_{\mathbb{A}}(p), \varphi_{\mathbb{A}}(q))\}$$

$$\delta_{\mathbb{A}}(p * q) - \gamma = (\delta_{\mathbb{A}})^{U}_{\gamma}(p * q)$$

$$\leq \max\{(\delta_{\mathbb{A}})^{U}_{\gamma}(p * (p * q)), (\delta_{\mathbb{A}})^{U}_{\gamma}(q)\}$$

$$= \max\{(\delta_{\mathbb{A}})^{U}_{\gamma}(p), (\delta_{\mathbb{A}})^{U}_{\gamma}(q)\}$$

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

$$\leq \max\{(\delta_{\mathbb{A}}(p) - \gamma), (\delta_{\mathbb{A}}(q) - \gamma)\}$$

$$= \max\{\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q)\} - \gamma$$

$$\delta_{\mathbb{A}}(p * q) \leq \max\{\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q)\}$$

Hence $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ is an Intuitionistic fuzzy \mathbb{Z} – sub-algebra of \mathbb{P} .

Theorem 2.6

Let A is an intuitionistic fuzzy subset of P such that the Intuitionistic Fuzzy Multiplication - γ be $\mathbb{A}^{V}_{\nu}(p)$. Then Abe an intuitionistic fuzzy Z – Ideal of \mathbb{P} , for all $\gamma \in [0,1]$.

Proof:

Let \mathbb{A}^{V}_{γ} is an intuitionistic fuzzy Z – Ideal of \mathbb{P} for all $\gamma \in [0,1]$.

Let
$$\mathcal{A}_{\gamma}$$
 is an intuitionistic fuzzy \mathcal{L} – fucation in the Let $\mathcal{P}, \mathcal{A} \in \mathbb{P}$
i. $\gamma \varphi_{\mathbb{A}}(\mathcal{P}) = (\varphi_{\mathbb{A}})^{V}_{\gamma}(0)$
 $\geq (\varphi_{\mathbb{A}})^{V}_{\gamma}(\mathcal{P})$
 $= \gamma \varphi_{\mathbb{A}}(\mathcal{P})$ which implies $\varphi_{\mathbb{A}}(0) \geq \varphi_{\mathbb{A}}(\mathcal{P})$
ii. $\gamma \delta_{\mathbb{A}}(\mathcal{P}) = (\delta_{\mathbb{A}})^{V}_{\gamma}(0)$
 $\leq (\delta_{\mathbb{A}})^{V}_{\gamma}(\mathcal{P})$
 $= \gamma \delta_{\mathbb{A}}(\mathcal{P})$ which implies $\delta_{\mathbb{A}}(0) \leq \delta_{\mathbb{A}}(\mathcal{P})$
iii. $\gamma \varphi_{\mathbb{A}}(\mathcal{P}) = (\varphi_{\mathbb{A}})^{V}_{\gamma}(\mathcal{P})$
 $\geq \min \{(\varphi_{\mathbb{A}})^{V}_{\gamma}(\mathcal{P} * \mathcal{A}), (\varphi_{\mathbb{A}})^{V}_{\gamma}(\mathcal{A})\}$
 $= \min \{(\gamma \varphi_{\mathbb{A}}(\mathcal{P} * \mathcal{A})), (\gamma \varphi_{\mathbb{A}}(\mathcal{A}))\}$
 $= \min \gamma \{\varphi_{\mathbb{A}}(\mathcal{P} * \mathcal{A}), \varphi_{\mathbb{A}}(\mathcal{A})\}$
which implies $\varphi_{\mathbb{A}}(\mathcal{P}) \geq \min \{(\mathcal{P} * \mathcal{A}), \varphi_{\mathbb{A}}(\mathcal{A})\}$
iv. $\gamma \delta_{\mathbb{A}}(\mathcal{P}) = (\delta_{\mathbb{A}})^{V}_{\gamma}(\mathcal{P})$

$$|\nabla V_{A}(\mathcal{P}) - (\partial_{A})_{\gamma}(\mathcal{P})|$$

$$\leq \max \{ (\delta_{A})_{\gamma}^{V}(\mathcal{P} * q), (\delta_{A})_{\gamma}^{V}(q) \}$$

$$= \max \{ (\gamma \delta_{A}(\mathcal{P} * q)), (\gamma \delta_{A}(q)) \}$$

$$= \max \gamma \{ \delta_{A}(\mathcal{P} * q), \delta_{A}(q) \}$$

which implies $\delta_{\mathbb{A}}(p) \leq \max\{(p * q), \delta_{\mathbb{A}}(q)\}$

Therefore $\mathbb{A} = (\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ be an intuitionistic fuzzy \mathbb{Z} – Ideal of \mathbb{P} .

Theorem 2.7

If Abe an intuitionistic fuzzy Z – Ideal of \mathbb{P} . Then the Intuitionistic FM- γ be $\mathbb{A}^{V}_{\nu}(p)$ of \mathbb{A} = $(\varphi_{\mathbb{A}}, \delta_{\mathbb{A}})$ is an intuitionistic fuzzy Z – Ideal of \mathbb{P} , for all $\gamma \in [0,1]$.

If A is an intuitionistic fuzzy Z – Ideal of \mathbb{P} , for all $\gamma \in [0,1]$.

$$\begin{split} \mathrm{i.}(\varphi_{\mathbb{A}})_{\gamma}^{V}(0) &= \ \gamma \varphi_{\mathbb{A}}(\mathcal{P}) \geq \gamma \varphi_{\mathbb{A}}(\mathcal{P}) \\ &= \ (\varphi_{\mathbb{A}})_{\gamma}^{V}(\mathcal{P}) \\ \mathrm{which implies} \ (\varphi_{\mathbb{A}})_{\gamma}^{V}(0) \geq \ (\varphi_{\mathbb{A}})_{\gamma}^{V}(\mathcal{P}) \\ \mathrm{ii.}(\delta_{\mathbb{A}})_{\gamma}^{V}(0) &= \ \gamma \delta_{\mathbb{A}}(\mathcal{P}) \leq \gamma \delta_{\mathbb{A}}(\mathcal{P}) \\ &= \ (\delta_{\mathbb{A}})_{\gamma}^{V}(\mathcal{P}) \\ \mathrm{which implies} \ (\delta_{\mathbb{A}})_{\gamma}^{V}(0) \leq \ (\delta_{\mathbb{A}})_{\gamma}^{V}(\mathcal{P}) \end{split}$$

iii.
$$(\varphi_{\mathbb{A}})_{\gamma}^{V}(p) = \gamma \varphi_{\mathbb{A}}(p)$$

$$\geq \min \gamma \{ \varphi_{\mathbb{A}}(p * q) , \varphi_{\mathbb{A}}(q) \}$$

$$= \min \gamma \{ \varphi_{\mathbb{A}}(p * q) , \varphi_{\mathbb{A}}(q) \}$$

$$= \min \{ (\gamma \varphi_{\mathbb{A}}(p * q)) , (\gamma \varphi_{\mathbb{A}}(q)) \}$$
which implies $(\varphi_{\mathbb{A}})_{\gamma}^{V}(p) \geq \min \{ (\varphi_{\mathbb{A}})_{\gamma}^{V}(p * q) , (\varphi_{\mathbb{A}})_{\gamma}^{V}(q) \}$
iv. $(\delta_{\mathbb{A}})_{\gamma}^{V}(p) = \gamma \delta_{\mathbb{A}}(p)$

$$\leq \max \gamma \{ \delta_{\mathbb{A}}(p * q) , \delta_{\mathbb{A}}(q) \}$$

$$= \max \gamma \{ \delta_{\mathbb{A}}(p * q) , \delta_{\mathbb{A}}(q) \}$$

$$= \max \{ (\gamma \delta_{\mathbb{A}}(p * q)) , (\gamma \delta_{\mathbb{A}}(q)) \}$$
which implies $(\delta_{\mathbb{A}})_{\gamma}^{V}(p) \leq \max \{ (\delta_{\mathbb{A}})_{\gamma}^{V}(p * q) , (\delta_{\mathbb{A}})_{\gamma}^{V}(q) \}$
Therefore $\mathbb{A}_{\gamma}^{V} = ((\varphi_{\mathbb{A}})_{\gamma}^{V}, (\delta_{\mathbb{A}})_{\gamma}^{V})$ of \mathbb{A} is an intuitionistic fuzzy Z – Ideal of \mathbb{P} , and then for all $\gamma \in [0,1]$.

Theorem 2.8

For any Intuitionistic fuzzy Z – sub-algebra \mathbb{A} of \mathbb{P} , $\forall \gamma \in [0,1]$. If γ - Intuitionistic Fuzzy Multiplication be \mathbb{A}^V_{γ} of \mathbb{A} be Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} .

Proof:

Let
$$\gamma \in [0,1]$$
 & let $p,q \in \mathbb{P}$.
Now, $(\varphi_{\mathbb{A}})^{V}_{\gamma}(p * q) = \gamma \varphi_{\mathbb{A}}(p * q) \ge \min \{\gamma(\varphi_{\mathbb{A}}(p), \varphi_{\mathbb{A}}(q))\}$

$$\ge \min \{\gamma \varphi_{\mathbb{A}}(p), \gamma \varphi_{\mathbb{A}}(q)\}$$

$$(\varphi_{\mathbb{A}})^{V}_{\gamma}(p * q) \ge \min \{(\varphi_{\mathbb{A}})^{V}_{\gamma}(p), (\varphi_{\mathbb{A}})^{V}_{\gamma}(q)\}$$

$$(\delta_{\mathbb{A}})^{V}_{\gamma}(p * q) = \gamma \delta_{\mathbb{A}}(p * q)$$

$$\le \max \{\gamma(\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q))\}$$

$$\le \max \{\gamma(\delta_{\mathbb{A}}(p), \gamma \delta_{\mathbb{A}}(q))\}$$

$$(\delta_{\mathbb{A}})^{V}_{\gamma}(p * q) \le \max \{(\delta_{\mathbb{A}})^{V}_{\gamma}(p), (\delta_{\mathbb{A}})^{V}_{\gamma}(q)\}$$

Hence an intuitionistic fuzzy Z – sub-algebra $\mathbb{A}^V_{\nu}(p)$ of \mathbb{P} .

Theorem 2.9

If $\mathbb{A}^{V}_{\gamma}(p)$ be a γ - Intuitionistic FM of \mathbb{A} be an Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} . Then for any an Intuitionistic fuzzy Z – sub-algebra \mathbb{A} of \mathbb{P} .

Let
$$\mathbb{A}_{\gamma}^{V}(p)$$
 of \mathbb{A} in \mathbb{P} , for any $\gamma \in [0,1]$.

$$\gamma \varphi_{\mathbb{A}}(p * q) = (\varphi_{\mathbb{A}})_{\gamma}^{V}(p * q)$$

$$\geq \min\{(\varphi_{\mathbb{A}})_{\gamma}^{V}(p), (\varphi_{\mathbb{A}})_{\gamma}^{V}(q)\}$$

$$= \min\{\gamma \varphi_{\mathbb{A}}(p), \gamma \varphi_{\mathbb{A}}(q)\}$$

$$= \min\{\gamma (\varphi_{\mathbb{A}}(p), \varphi_{\mathbb{A}}(q))\}$$
Implies that $\varphi_{\mathbb{A}}(p * q) \geq \min\{\varphi_{\mathbb{A}}(p), \varphi_{\mathbb{A}}(q)\}$

$$\gamma \delta_{\mathbb{A}}(p * q) = (\delta_{\mathbb{A}})_{\gamma}^{V}(p * q)$$

$$\leq \max\{(\delta_{\mathbb{A}})_{\gamma}^{V}(p), (\delta_{\mathbb{A}})_{\gamma}^{V}(q)\}$$

$$= \max\{\gamma \delta_{\mathbb{A}}(p), \gamma \delta_{\mathbb{A}}(q)\}$$

$$= \max\{\gamma (\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q))\}$$
which implies $\delta_{\mathbb{A}}(p * q) \leq \max\{\delta_{\mathbb{A}}(p), \delta_{\mathbb{A}}(q)\}$

Hence A be intuitionistic fuzzy Z – sub-algebra of \mathbb{P} .

3. N – GENERATED FUZZY TRANSLATION AND FUZZY MULTIPLICATION IN $\mathbf{Z}-\mathbf{ALGEBRA}$

Definition 3.1

Let ξ_n in \mathbb{P} is termed as N-generated fuzzy subalgebra on \mathbb{P} . The following criteria is satisfied, $\xi_n(p_n * q_n) \ge \min \{\xi_n(p_n), \xi_n(q_n)\}$

Definition 3.2

$$(A1)\,\xi_n(0) \ge \xi_n(p_n)$$

(A2)
$$\xi_n(p_n) \ge \min\{\xi_n(p_n * q_n), \xi_n(q_n)\}$$

The following criteria are satisfied, If a fuzzy set ξ_n in \mathbb{P} is termed as N-generated fuzzy BCK – Ideal of \mathbb{P} .

Definition 3.3

Let ξ_n be a fuzzy set in \mathbb{P} is defined as N-generated fuzzy Z – Ideal of \mathbb{P} . If it fulfils the following criteria,

$$i.\xi_n(0) \ge \xi_n(p_n)$$

ii.
$$\xi_n(p_n) \ge \min\{\xi_n(p_n * q_n), \xi_n(q_n)\}$$

Theorem 3.4

If σ is an N-generated fuzzy Z – Ideal of $\mathbb P$ and γ is an N-generated Fuzzy Translation $\sum_{n=1}^N \sigma_{\gamma_n}^{U_n} (p_n)$ is an N-generated fuzzy Z – Ideal of $\mathbb P$, $\forall \gamma_n \in [0, U]$

Proof:

Let σ be a N-generated fuzzy Z – Ideal of \mathbb{P} and $\gamma_n \in [0, U]$

We now have

$$i.\sum_{n=1}^{N} \sigma_{\gamma_n}^{U_n}(0) = \sum_{n=1}^{N} \sigma(0) + \gamma_n$$

$$\geq \sum_{n=1}^{N} \sigma\left(\mathcal{p}_{n}\right) + \gamma_{n}$$

$$= \sum_{n=1}^N \sigma_{\gamma_n}^{U_n}(\mathcal{P}_n)$$

ii.
$$\sum_{n=1}^{N} \sigma_{\gamma_n}^{U_n}(p_n) = \sum_{n=1}^{N} \sigma(p_n) + \gamma_n$$

$$\geq \sum_{n=1}^{N} \{ \sigma(p_n * q_n) \wedge \sigma(q_n) \} + \gamma_n$$

$$=\sum_{n=1}^{N} \{ (\sigma(p_n * q_n) + \gamma_n) \wedge (\sigma(q_n) + \gamma_n) \}$$

$$\sum_{n=1}^{N} \sigma_{\gamma_n}^{U_n}(\mathcal{P}_n) \geq \sum_{n=1}^{N} \left\{ \sigma_{\gamma_n}^{U_n}(\mathcal{P}_n * q_n) \wedge \sigma_{\gamma_n}^{U_n}(q_n) \right\}$$

Hence σ is a N-generated fuzzy Z – Ideal of \mathbb{P} .

Theorem 3.5

Let σ is a N-generated fuzzy subset of \mathbb{P} such that the γ - N-Generated Fuzzy Translation $\sum_{n=1}^N \sigma_{\gamma_n}^{U_n}(p_n)$. Then σ is a N-generated fuzzy Z - Ideal of \mathbb{P} and $\gamma_n \in [0, U]$.

Proof:

Let
$$\sigma_{\gamma_n}^{U_n}$$
 be a N-generated fuzzy Z – Ideal of \mathbb{P} and let $\gamma_n \in [0, U]$
Let $\mathcal{P}_n, q_n \in \mathbb{P}$
i. $\sum_{n=1}^N \sigma(0) + \gamma_n = \sum_{n=1}^N \sigma_{\gamma_n}^{U_n}(0)$
 $\geq \sum_{n=1}^N \sigma_{\gamma_n}^{U_n}(\mathcal{P}_n)$
 $= \sum_{n=1}^N \sigma(\mathcal{P}_n) + \gamma_n$
which implies $\sum_{n=1}^N \sigma(0) \geq \sum_{n=1}^N \sigma(\mathcal{P}_n)$

$$ii.\sum_{n=1}^{N} \sigma(p_n) + \gamma_n = \sum_{n=1}^{N} \sigma_{\gamma_n}^{U_n}(p_n)$$

$$\geq \sum_{n=1}^{N} \{\sigma_{\gamma_n}^{U_n}(p_n * q_n) \wedge \sigma_{\gamma_n}^{U_n}(q_n)\}$$

$$= \sum_{n=1}^{N} \{(\sigma(p_n * q_n) + \gamma_n) \wedge (\sigma(q_n) + \gamma_n)\}$$

$$= \sum_{n=1}^{N} \{\sigma(p_n * q_n) \wedge \sigma(q_n)\} + \gamma_n$$

which implies $\sum_{n=1}^{N} \sigma(p_n) \ge \sum_{n=1}^{N} \{(p_n * q_n) \land \sigma(q_n)\}$

Therefore $\sigma_{\nu_n}^{U_n}$ of σ is a N-generated fuzzy Z – Ideal of \mathbb{P} .

Theorem 3.6

Let a N-generated fuzzy Z – Ideal σ of \mathbb{P} and $\gamma_n \in [0, U]$. Let \mathbb{P} be a Z – algebra, then $\sigma_{\gamma_n}^{U_n}$ be γ –N-generated Fuzzy Translation of σ is N-generated fuzzy Z - sub-algebra of \mathbb{P} .

Proof:

Let
$$\gamma_n \in [0, U] \& p_n, q_n \in \mathbb{P}$$

We have.

$$\begin{split} \sum_{n=1}^{N} \sigma_{\gamma_n}^{U_n} \left(\mathcal{P}_n * \mathcal{Q}_n \right) &= \sum_{n=1}^{N} \sigma(\mathcal{P}_n * \mathcal{Q}_n) + \gamma_n \\ &\geq \sum_{n=1}^{N} \{ \sigma(\mathcal{Q}_n * (\mathcal{P}_n * \mathcal{Q}_n)) \wedge \sigma(\mathcal{Q}_n) \} + \gamma_n \\ &= \sum_{n=1}^{N} \{ \sigma(\mathcal{P}_n * (\mathcal{Q}_n * \mathcal{Q}_n)) \wedge \sigma(\mathcal{Q}_n) \} + \gamma_n \\ &\geq \sum_{n=1}^{N} \{ \sigma(\mathcal{P}_n) \wedge \sigma(\mathcal{Q}_n) \} + \gamma_n \\ &\geq \sum_{n=1}^{N} \{ (\sigma(\mathcal{P}_n) + \gamma_n) \wedge (\sigma(\mathcal{Q}_n) + \gamma_n) \} \\ &= \sum_{n=1}^{N} \{ \sigma_{\gamma_n}^{U_n} (\mathcal{P}_n) \wedge \sigma_{\gamma_n}^{U_n} (\mathcal{Q}_n) \} \end{split}$$

 $\sigma_{\gamma_n}^{U_n}$ is N-generated fuzzy Z – algebra of \mathbb{P} .

Theorem 3.7

Let σ be N-generated fuzzy Z – sub-algebra of $\mathbb P$ and let $\sigma_{\gamma_n}^{U_n}$ of σ be a N-generated Fuzzy Translation - γ and then $\forall \gamma_n \in [0, U]$ and then σ is N-generated fuzzy Z – sub-algebra of $\mathbb P$.

We assume that $\sigma_{V_n}^{U_n}$ of σ be a N-generated fuzzy Z – Ideal of \mathbb{P} .

Then we have

$$\begin{split} \sum_{n=1}^{N} \sigma(p_{n} * q_{n}) + \gamma_{n} &= \sum_{n=1}^{N} \sigma_{\gamma_{n}}^{U_{n}} (p_{n} * q_{n}) \\ &\geq \sum_{n=1}^{N} \left\{ \sigma_{\gamma_{n}}^{U_{n}} (p_{n} * (p_{n} * q_{n})) \wedge \sigma_{\gamma_{n}}^{U_{n}} (q_{n}) \right\} \\ &= \sum_{n=1}^{N} \left\{ \sigma_{\gamma_{n}}^{U_{n}} (p_{n} * p_{n}) * q_{n} \wedge \sigma_{\gamma_{n}}^{U_{n}} (q_{n}) \right\} \\ &\geq \sum_{n=1}^{N} \left\{ \sigma_{\gamma_{n}}^{U_{n}} (p_{n}) \wedge \sigma_{\gamma_{n}}^{U_{n}} (q_{n}) \right\} \\ &= \sum_{n=1}^{N} \left\{ (\sigma(p_{n}) + \gamma_{n}) \wedge (\sigma(q_{n}) + \gamma_{n}) \right\} \\ &= \sum_{n=1}^{N} \left\{ \sigma(p_{n}) \wedge \sigma(q_{n}) \right\} + \gamma_{n} \\ &\Rightarrow \sum_{n=1}^{N} \sigma(p_{n} * q_{n}) \geq \sum_{n=1}^{N} \left\{ \sigma(p_{n}) \wedge \sigma(q_{n}) \right\} \end{split}$$

∴ σ is N-generated fuzzy Z – sub-algebra of \mathbb{P} .

Theorem 3.8

Let σ is a N-generated fuzzy subset of $\mathbb P$ such that the γ is a N-generated Fuzzy Multiplication $\sum_{n=1}^N \sigma_{\gamma_n}^{V_n}(p_n)$. Then σ is a N-generated fuzzy Z – Ideal of $\mathbb P$ and for any $\gamma_n \in [0,1]$.

Proof:

Let $\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}$ is a N-generated fuzzy Z – Ideal of $\mathbb P$ for all $\gamma_n \in [0,1]$.

Let
$$p_n$$
, $q_n \in \mathbb{P}$

We now have.

i.
$$\sum_{n=1}^{N} \gamma_n \sigma(\mathcal{P}_n) = \sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(0)$$
$$\geq \sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(\mathcal{P}_n)$$

$$= \sum_{n=1}^{N} \gamma_n \sigma(\mathcal{P}_n)$$
 which implies $\sum_{n=1}^{N} \sigma(0) \ge \sum_{n=1}^{N} \sigma(\mathcal{P}_n)$

ii.
$$\sum_{n=1}^{N} \gamma_n \sigma(p_n) = \sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n)$$

$$\geq \sum_{n=1}^{N} \{ \sigma_{\gamma_n}^{V_n}(p_n * q_n) \wedge \sigma_{\gamma_n}^{V_n}(q_n) \}$$

$$= \sum_{n=1}^{N} \{ (\gamma_n \sigma(p_n * q_n)) \wedge (\gamma_n \sigma(q_n)) \}$$

$$= \sum_{n=1}^{N} \gamma_n \{ \sigma(p_n * q_n) \wedge \sigma(q_n) \}$$

which implies $\sum_{n=1}^{N} \sigma(p_n) \ge \sum_{n=1}^{N} \{(p_n * q_n) \land \sigma(q_n)\}\$

Therefore σ is a N-generated fuzzy Z-Ideal of \mathbb{P} .

Theorem 3.9

A σ is a N-generated fuzzy Z – ideal of \mathbb{P} . Then the γ be an N-generated Fuzzy Multiplication $-\gamma$, $\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n)$ of N-generated fuzzy Z – Ideal σ of \mathbb{P} , for any $\gamma_n \in [0,1]$.

Proof:

If σ is a N-generated fuzzy Z – Ideal of \mathbb{P} and $\gamma_n \in [0,1]$.

We now have

$$\begin{split} \mathrm{i.} \sum_{n=1}^{N} \sigma_{\gamma_{n}}^{V_{n}}(0) &= \sum_{n=1}^{N} \gamma_{n} \sigma\left(\mathcal{P}_{n}\right) \\ &\geq \sum_{n=1}^{N} \gamma_{n} \sigma\left(\mathcal{P}_{n}\right) \\ &= \sum_{n=1}^{N} \sigma_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n}) \\ \mathrm{which\ implies}\ \sum_{n=1}^{N} \sigma_{\gamma_{n}}^{V_{n}}(0) &\geq \sum_{n=1}^{N} \sigma_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n}) \end{split}$$

$$\begin{split} \text{ii.} \sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n) &= \sum_{n=1}^{N} \gamma_n \sigma\left(p_n\right) \\ &\geq \sum_{n=1}^{N} \gamma_n \{\sigma(p_n * q_n) \land \sigma(q_n)\} \\ &= \sum_{n=1}^{N} \gamma_n \{\sigma(p_n * q_n) \land \sigma(q_n)\} \\ &= \sum_{n=1}^{N} \{(\gamma_n \sigma(p_n * q_n)) \land (\gamma_n \sigma(q_n))\} \\ \text{which implies } \sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n) \geq \sum_{n=1}^{N} \{\sigma_{\gamma_n}^{V_n}(p_n * q_n) \land \sigma_{\gamma_n}^{V_n}(q_n)\} \end{split}$$

Therefore, $\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}$ of σ is a N-generated fuzzy Z – Ideal of \mathbb{P} and then for every $p_n, q_n \in [0,1]$.

Theorem 3.10

Let σ be N-generated fuzzy Z – sub-algebra of \mathbb{P} , $\gamma_n \in [0,1]$. If N-generated Fuzzy Multiplication - γ be $\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n)$ of σ is N-generated fuzzy Z – sub-algebra of \mathbb{P} .

Proof:

Let
$$\gamma_n \in [0,1] \& \mathcal{P}_n$$
, $q_n \in \mathbb{P}$
Then $\sum_{n=1}^N \sigma(\mathcal{P}_n * q_n) \ge \sum_{n=1}^N \{\sigma(\mathcal{P}_n) \land \sigma(q_n)\}$
We have,

$$\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n * q_n) = \sum_{n=1}^{N} \gamma_n \sigma(p_n * q_n)$$

$$\geq \sum_{n=1}^{N} \gamma_n \{\sigma(p_n) \wedge \sigma(q_n)\}$$

$$\geq \sum_{n=1}^{N} \gamma_n \sigma(p_n) \wedge \gamma_n \sigma(q_n)$$

which implies $\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n * q_n) \ge \sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(p_n) \wedge \sigma_{\gamma_n}^{V_n}(q_n)$

Hence, $\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}$ is N-generated fuzzy Z – sub-algebra of \mathbb{P} .

Theorem 3.11

Let σ be N-generated fuzzy Z – sub-algebra of \mathbb{P} . If γ is an N-generated Fuzzy Multiplication $\sum_{n=1}^{N} \sigma_{\gamma_n}^{V_n}(\mathcal{P}_n)$ and then σ be N-generated fuzzy subset of \mathbb{P} , $\forall \gamma_n \in [0,1]$.

Proof

Let $\sigma_{\gamma_n}^{V_n}(p_n)$ of σ is N-generated fuzzy Z – sub-algebra and $\gamma_n \in [0,1]$.

$$\begin{split} \sum_{n=1}^{N} \gamma_{n} \sigma(p_{n} * q_{n}) &= \sum_{n=1}^{N} \sigma_{\gamma_{n}}^{V_{n}} \left(p_{n} * q_{n}\right) \\ &\geq \sum_{n=1}^{N} \sigma_{\gamma_{n}}^{V_{n}} (p_{n}) \wedge \sigma_{\gamma_{n}}^{V_{n}} (q_{n}) \\ &= \sum_{n=1}^{N} \{\gamma_{n} \sigma(p_{n}) \wedge \gamma_{n} \sigma(q_{n})\} \\ &= \sum_{n=1}^{N} \gamma_{n} \{\sigma(p_{n}) \wedge \sigma(q_{n})\} \\ &\Rightarrow \sum_{n=1}^{N} \sigma(p_{n} * q_{n}) \geq \sum_{n=1}^{N} \sigma(p_{n}) \wedge \sigma(q_{n}) \end{split}$$

 σ is a N-generated fuzzy Z – sub-algebra of \mathbb{P} .

4. N – GENERATED INTUITIONISTIC FUZZY TRANSLATION AND FUZZY MULTIPLICATION IN Z – ALGEBRA

Definition 4.1

An N-generated intuitionistic fuzzy set on Z – Algebra is $\sum_{n=1}^{N} \mathbb{A} = (\mathbb{P}, \varphi_{\mathbb{A}_n}, \delta_{\mathbb{A}_n})$ is in \mathbb{P} is termed as N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} , if it fulfils the following criteria,

i.
$$\sum_{n=1}^N \varphi_{\mathbb{A}_n}(0) \ge \sum_{n=1}^N \varphi_{\mathbb{A}_n}(p_n)$$

ii.
$$\sum_{n=1}^{N} \delta_{\mathbb{A}_n}(0) \leq \sum_{n=1}^{N} \delta_{\mathbb{A}_n}(p_n)$$

iii.
$$\sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(p_n) \ge \sum_{n=1}^{N} \min \left\{ \varphi_{\mathbb{A}_n}(p_n * q_n) , \varphi_{\mathbb{A}_n}(q_n) \right\}$$

iv.
$$\sum_{n=1}^{N} \delta_{\mathbb{A}_n}(p_n) \leq \sum_{n=1}^{N} \max \{ \delta_{\mathbb{A}_n}(p_n * q_n), \delta_{\mathbb{A}_n}(q_n) \}$$
 for all $p_n, q_n \in \mathbb{P}$

Definition 4.2

Let $\sum_{n=1}^{N} \mathbb{A} = (\varphi_{\mathbb{A}_n}, \delta_{\mathbb{A}_n})$ be the N – Generated intuitionistic fuzzy set in \mathbb{P} . If the below criteria are satisfied,

$$\varphi_{\mathbb{A}_n}(p_n * q_n) \ge \min \left\{ \varphi_{\mathbb{A}_n}(p_n) , \varphi_{\mathbb{A}_n}(q_n) \right\}$$

$$\delta_{\mathbb{A}_n}(p_n * q_n) \le \max \left\{ \delta_{\mathbb{A}_n}(p_n) , \delta_{\mathbb{A}_n}(q_n) \right\}$$
for all $p_n, q_n \in \mathbb{P}$

Then it is termed as N – Generated Intuitionistic sub – algebra on \mathbb{P} .

Theorem 4.3

If $\sum_{n=1}^{N} \mathbb{A} = (\varphi_{\mathbb{A}_n}, \delta_{\mathbb{A}_n}) \subset \mathbb{P}$ be an N-generated intuitionistic fuzzy Z – Ideal, then N-generated Intuitionistic Fuzzy γ - Translation $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{U_n}(p_n)$ of $\sum_{n=1}^{N} \mathbb{A}$ is an N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} , $\forall \gamma_n \in [0, U]$

Proof:

Let N-generated intuitionistic fuzzy Z – Ideal be $\sum_{n=1}^{N} \mathbb{A}$ of \mathbb{P} and $\gamma_n \in [0, U]$

i.
$$\sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(0) = \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(0) + \gamma_n$$

$$\geq \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(p_n) + \gamma_n$$

$$= \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(p_n)$$

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

$$\begin{split} \mathrm{ii.} & \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{U_n}(0) \ = & \sum_{n=1}^{N} \delta_{\mathbb{A}_n}(0) - \gamma_n \\ & \leq \sum_{n=1}^{N} \delta_{\mathbb{A}_n}(p_n) - \gamma_n \\ & = & \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{U_n}(p_n) \end{split}$$

$$\begin{split} &\mathrm{iii.} \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n}) = \sum_{n=1}^{N} \varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n}) + \gamma_{n} \\ &\geq \sum_{n=1}^{N} \min \big\{ \varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) \;, \varphi_{\mathbb{A}_{n}}(q_{n}) \big\} + \; \gamma_{n} \\ &= \sum_{n=1}^{N} \min \big\{ (\varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) + \gamma_{n}), \end{split}$$

$$(\varphi_{\mathbb{A}_n}(q_n) + \gamma_n)\}$$

$$\sum_{n=1}^N (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(p_n) \ge \sum_{n=1}^N \min\{(\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(p_n * q_n), (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(q_n)\}$$

$$\begin{split} \mathrm{iv.} & \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(p_{n}) = \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(p_{n}) - \gamma_{n} \\ & \leq \sum_{n=1}^{N} \max \big\{ \delta_{\mathbb{A}_{n}}(p_{n} * q_{n}), \delta_{\mathbb{A}_{n}}(q_{n}) \big\} - \gamma_{n} \\ & = \sum_{n=1}^{N} \max \big\{ (\delta_{\mathbb{A}_{n}} \big((p_{n} * q_{n}) \big) - \gamma_{n} \big), \\ & \qquad \qquad (\delta_{\mathbb{A}_{n}}(q_{n}) - \gamma_{n}) \big\} \\ & \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(p_{n}) \leq \sum_{n=1}^{N} \max \big\{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(p_{n} * q_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \big\} \end{split}$$

Hence $\sum_{n=1}^{N} \mathbb{A}$ is known as N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} .

Theorem 4.4

Let $\sum_{n=1}^{N} \mathbb{A}$ is an N-generated intuitionistic fuzzy subset and Z – Ideal of \mathbb{P} such that γ be the N-generated Intuitionistic fuzzy translation $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{U_n}(p_n)$, $\forall \gamma_n \in [0, U]$. Then $\sum_{n=1}^{N} \mathbb{A}$ be a N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} .

Proof:

Let N-generated intuitionistic fuzzy Z – Ideal be $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{U_n}(p_n)$ of \mathbb{P} , for any $\gamma_n \in [0, U]$.

Let
$$p_n, q_n \in \mathbb{P}$$

$$\begin{split} \mathrm{i.} \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(0) + \gamma_n &= \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(0) \\ &\geq \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(\mathscr{P}_n) \\ &= \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(0) + \gamma_n \end{split}$$

which implies
$$\sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(0) \geq \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(p_n)$$

$$\begin{split} \text{ii.} \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(0) - \gamma_{n} &= \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(0) \\ &\leq \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(p_{n}) \\ &= \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(0) - \gamma_{n} \\ \text{which implies } \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(0) \leq \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(p_{n}) \end{split}$$

$$\begin{split} \mathrm{iii.} & \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(p_n) + \gamma_n \ = \ \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n} \left(p_n\right) \\ & \geq \sum_{n=1}^{N} \min\{ (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n} \left(p_n * q_n\right), (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n} (q_n) \} \\ & = & \sum_{n=1}^{N} \min \ \left\{ \left(\varphi_{\mathbb{A}_n}(p_n * q_n) + \gamma_n\right), \right. \\ & \left. \left(\varphi_{\mathbb{A}_n}(q_n) + \gamma_n\right) \right\} \\ & = & \sum_{n=1}^{N} \min \left\{ \varphi_{\mathbb{A}_n}(p_n * q_n), \varphi_{\mathbb{A}_n}(q_n) \right\} + \gamma_n \\ & \quad \text{which implies } \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(p_n) \geq \ \sum_{n=1}^{N} \min \left\{ (p_n * q_n), \varphi_{\mathbb{A}_n}(q_n) \right\} \end{split}$$

$$\text{iv.} \sum_{n=1}^{N} \delta_{\mathbb{A}_n}(\mathcal{P}_n) - \gamma_n = \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{U_n}(\mathcal{P}_n)$$

$$\leq \sum_{n=1}^{N} \max \left\{ (\delta_{\mathbb{A}})_{\gamma_n}^{U_n}(\mathcal{P}_n * q_n), (\delta_{\mathbb{A}})_{\gamma_n}^{U_n}(q_n) \right\}$$

$$= \sum_{n=1}^{N} \max\{(\delta_{\mathbb{A}_n}((p_n * q_n)) - \gamma_n),$$

$$(\delta_{\mathbb{A}_n}(q_n) - \gamma_n) \}$$

$$= \sum_{n=1}^N \max \{ \delta_{\mathbb{A}_n}(p_n * q_n), \delta_{\mathbb{A}_n}(q_n) \} - \gamma_n$$

which implies $\sum_{n=1}^{N} \delta_{\mathbb{A}_n}(p_n) \leq \sum_{n=1}^{N} \max\{(p_n * q_n), \delta_{\mathbb{A}_n}(q_n)\}$

Therefore $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{U_n}(p_n) = \sum_{n=1}^{N} ((\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(p_n), (\delta_{\mathbb{A}})_{\gamma_n}^{U_n}(p_n))$ of $\sum_{n=1}^{N} \mathbb{A}$ is said to be N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} .

Theorem 4.5

If N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} is $\sum_{n=1}^{N} \mathbb{A}$, then $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{U_n}$ be N-generated Intuitionistic Fuzzy γ -Translationis N-generated intuitionistic fuzzy Z – sub-algebra $\sum_{n=1}^{N} \mathbb{A}$ of \mathbb{P} , then for any $\gamma_n \in [0, U]$.

Proof:

We have,

$$\begin{split} \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}} (p_{n} * q_{n}) &= \sum_{n=1}^{N} \{ (\varphi_{\mathbb{A}_{n}} (p_{n} * q_{n}) + \gamma_{n}) \\ &\geq \sum_{n=1}^{N} \min \{ \varphi_{\mathbb{A}_{n}} (q_{n} * (p_{n} * q_{n})), \varphi_{\mathbb{A}_{n}} (q_{n}) \} + \gamma_{n} \\ &= \sum_{n=1}^{N} \min \{ \varphi_{\mathbb{A}_{n}} (p_{n} * (q_{n} * q_{n})), \varphi_{\mathbb{A}_{n}} (q_{n}) \} + \gamma_{n} \end{split}$$

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

$$\geq \sum_{n=1}^{N} \min \{ \varphi_{\mathbb{A}_n}(\mathcal{P}_n), \varphi_{\mathbb{A}_n}(q_n) \} + \gamma_n$$

$$\geq \sum_{n=1}^{N} \min \{ (\varphi_{\mathbb{A}_n}(\mathcal{P}_n) + \gamma_n), (\varphi_{\mathbb{A}_n}(q_n) + \gamma_n) \}$$

$$= \sum_{n=1}^{N} \min \{ (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(\mathcal{P}_n), (\varphi_{\mathbb{A}})_{\gamma_n}^{U_n}(q_n) \}$$

$$\begin{split} & \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(p_{n} * q_{n}) &= \sum_{n=1}^{N} \{ (\delta_{\mathbb{A}_{n}}(p_{n} * q_{n}) - \gamma_{n}) \\ &\leq \sum_{n=1}^{N} \max \{ \delta_{\mathbb{A}_{n}}(q_{n} * (p_{n} * q_{n})), \delta_{\mathbb{A}_{n}}(q_{n}) \} - \gamma_{n} \\ &= \sum_{n=1}^{N} \max \{ \delta_{\mathbb{A}_{n}}(p_{n} * (q_{n} * q_{n})), \delta_{\mathbb{A}_{n}}(q_{n}) \} - \gamma_{n} \\ &\leq \sum_{n=1}^{N} \max \{ \delta_{\mathbb{A}_{n}}(p_{n}), \delta_{\mathbb{A}_{n}}(q_{n}) \} - \gamma_{n} \\ &\leq \sum_{n=1}^{N} \max \{ (\delta_{\mathbb{A}_{n}}(p_{n}) - \gamma_{n}), (\delta_{\mathbb{A}_{n}}(q_{n}) - \gamma_{n}) \} \\ &= \sum_{n=1}^{N} \max \{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(p_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \} \end{split}$$

Therefore $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{U_n}$ is a N-generated Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} .

Theorem 4.6

Let $\sum_{n=1}^{N} \mathbb{A}$ is a N-generated Intuitionistic fuzzy Z – sub-algebra of \mathbb{P} and then let $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{U_n}$ of $\sum_{n=1}^{N} \mathbb{A} = (\varphi_{\mathbb{A}_n}, \delta_{\mathbb{A}_n})$ is a N-generated Intuitionistic γ - FT for any $\gamma_n \in [0, U]$. Then an N-generated Intuitionistic fuzzy Z – sub-algebra $\sum_{n=1}^{N} \mathbb{A}$ of \mathbb{P} .

$$\begin{split} & \sum_{n=1}^{N} \varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) + \gamma_{n} = \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n} * q_{n}) \\ & \geq \sum_{n=1}^{N} \min(\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n} * (\mathcal{P}_{n} * q_{n})), (\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \} \\ & = \sum_{n=1}^{N} \min\{(\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n} * \mathcal{P}_{n}) * q_{n}), (\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \} \\ & \geq \sum_{n=1}^{N} \min\{(\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n}), (\varphi_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \} \\ & \geq \sum_{n=1}^{N} \min\{(\varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n}) + \gamma_{n}), (\varphi_{\mathbb{A}_{n}}(q_{n}) + \gamma_{n}) \} \\ & = \sum_{n=1}^{N} \min\{(\varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n}) + \gamma_{n}), (\varphi_{\mathbb{A}_{n}}(q_{n}) + \gamma_{n}) \} \\ & = \sum_{n=1}^{N} \min\{\varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \varphi_{\mathbb{A}_{n}}(q_{n}) \} + \gamma_{n} \end{split}$$

$$\begin{split} & \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) - \gamma_{n} = \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n} * q_{n}) \\ & \leq \sum_{n=1}^{N} \max \{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n} * (\mathcal{P}_{n} * q_{n})), (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \} \\ & = \sum_{n=1}^{N} \max \{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n} * \mathcal{P}_{n}) * q_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \} \\ & \leq \sum_{n=1}^{N} \max \{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(\mathcal{P}_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{U_{n}}(q_{n}) \} \\ & \leq \sum_{n=1}^{N} \max \{ (\delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}) - \gamma_{n}), (\delta_{\mathbb{A}_{n}}(q_{n}) - \gamma_{n}) \} \\ & = \sum_{n=1}^{N} \max \{ (\delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \delta_{\mathbb{A}_{n}}(q_{n}) \} - \gamma_{n} \\ & \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) \geq \sum_{n=1}^{N} \max \{ \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \delta_{\mathbb{A}_{n}}(q_{n}) \} \end{split}$$

Hence $\sum_{n=1}^{N} \mathbb{A} = (\varphi_{\mathbb{A}_n}, \delta_{\mathbb{A}_n})$ is N-generated intuitionistic fuzzy Z – sub-algebra of \mathbb{P} .

Theorem 4.7

Let $\sum_{n=1}^{N}$ Ais an N-generated intuitionistic fuzzy subset of \mathbb{P} such that the N-generated Intuitionistic γ - FM $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{V_n}(p) \subset \sum_{n=1}^{N} \mathbb{A}$ is a N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} , for all $\gamma_n \in [0,1]$. Then an N-generated intuitionistic fuzzy Z – Ideal $\sum_{n=1}^{N} \mathbb{A}$ of \mathbb{P} .

Proof:

Let $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{V_n}$ is an N- generated intuitionistic fuzzy Z – Ideal of \mathbb{P} for all $\gamma_n \in [0,1]$. Let $p_n, q \in \mathbb{P}$

i.
$$\begin{split} & \sum_{n=1}^{N} \gamma_n \varphi_{\mathbb{A}_n}(p_n) = \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(0) \geq \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(p_n) \\ & = \sum_{n=1}^{N} \gamma_n \varphi_{\mathbb{A}_n}(p_n) \\ & \text{which implies } & \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(0) \geq \sum_{n=1}^{N} \varphi_{\mathbb{A}_n}(p_n) \end{split}$$

ii.
$$\sum_{n=1}^{N} \gamma_n \delta_{\mathbb{A}_n}(\mathcal{P}_n) = \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(0) \leq \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(\mathcal{P}_n)$$
$$= \sum_{n=1}^{N} \gamma_n \delta_{\mathbb{A}_n}(\mathcal{P}_n)$$

which implies
$$\sum_{n=1}^{N} \delta_{\mathbb{A}_n}(0) \leq \sum_{n=1}^{N} \delta_{\mathbb{A}_n}(p_n)$$

$$\begin{split} \mathrm{iii.} & \sum_{n=1}^{N} \gamma_n \varphi_{\mathbb{A}_n}(\mathcal{P}_n) = \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n} \left(\mathcal{P}_n\right) \\ & \geq \sum_{n=1}^{N} \min\{(\varphi_{\mathbb{A}})_{\gamma_n}^{V_n} \left(\mathcal{P}_n * \mathcal{Q}_n\right), (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(\mathcal{Q}_n)\} \\ & = \sum_{n=1}^{N} \min\{(\gamma_n \varphi_{\mathbb{A}_n}(\mathcal{P}_n * \mathcal{Q}_n)), (\gamma_n \varphi_{\mathbb{A}_n}(\mathcal{Q}_n))\} \\ & = \sum_{n=1}^{N} \min \gamma_n \{\varphi_{\mathbb{A}_n}(\mathcal{P}_n * \mathcal{Q}_n), \varphi_{\mathbb{A}_n}(\mathcal{Q}_n)\} \end{split}$$

which implies
$$\sum_{n=1}^N \varphi_{\mathbb{A}_n}(p_n) \ge \sum_{n=1}^N \min \{(p_n * q_n), \varphi_{\mathbb{A}_n}(q_n)\}$$

iv.
$$\sum_{n=1}^{N} \gamma_n \delta_{\mathbb{A}_n}(p_n) = \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(p_n)$$

$$\leq \sum_{n=1}^{N} \max \left\{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (p_{n} * q_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (q_{n}) \right\}$$

$$= \sum_{n=1}^{N} \max \left\{ (\gamma_{n} \delta_{\mathbb{A}_{n}} (p_{n} * q_{n})), (\gamma_{n} \delta_{\mathbb{A}_{n}} (q_{n})) \right\}$$

$$= \sum_{n=1}^{N} \max \gamma_{n} \left\{ \delta_{\mathbb{A}_{n}} (p_{n} * q_{n}), \delta_{\mathbb{A}_{n}} (q_{n}) \right\}$$

which implies $\sum_{n=1}^{N} \delta_{\mathbb{A}_n}(p_n) \leq \sum_{n=1}^{N} \max \{(p_n * q_n), \delta_{\mathbb{A}_n}(q_n)\}$

Theorem 4.8

An N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} be $\sum_{n=1}^{N} \mathbb{A}$. Then $\sum_{n=1}^{N} \mathbb{A}^{V_n}_{\gamma_n}(p_n)$ is γ – N-generated Intuitionistic FM of $\sum_{n=1}^{N} \mathbb{A}$ is N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} , for all $\gamma_n \in [0,1]$.

Proof:

If $\sum_{n=1}^{N} \mathbb{A}$ is an N-generated intuitionistic fuzzy Z – Ideal of \mathbb{P} , for all $\gamma_n \in [0,1]$.

$$\begin{aligned} \mathrm{i.} \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (0) &= \sum_{n=1}^{N} \gamma_{n} \varphi_{\mathbb{A}_{n}} (\mathcal{P}_{n}) \geq \sum_{n=1}^{N} \gamma_{n} \varphi_{\mathbb{A}_{n}} (\mathcal{P}_{n}) \\ &= \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (\mathcal{P}_{n}) \end{aligned}$$

which implies $\sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(0) \geq \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(p_n)$

ii.
$$\sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(0) = \sum_{n=1}^{N} \gamma_n \delta_{\mathbb{A}_n}(p_n) \leq \sum_{n=1}^{N} \gamma_n \delta_{\mathbb{A}_n}(p_n)$$
$$= \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(p_n)$$

which implies $\sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(0) \leq \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(p_n)$

$$\begin{split} &\mathrm{iii.} \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (p_{n}) = \sum_{n=1}^{N} \gamma_{n} \varphi_{\mathbb{A}_{n}} (p_{n}) \\ & \geq \sum_{n=1}^{N} \min \gamma_{n} \big\{ \varphi_{\mathbb{A}_{n}} (p_{n} * q_{n}), \varphi_{\mathbb{A}_{n}} (q_{n}) \big\} \\ & = \sum_{n=1}^{N} \min \big\{ (\gamma_{n} \varphi_{\mathbb{A}_{n}} (p_{n} * q_{n})), (\gamma_{n} \varphi_{\mathbb{A}_{n}} (q_{n})) \big\} \\ & \Rightarrow \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (p_{n}) \geq \sum_{n=1}^{N} \min \{ (\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (p_{n} * q_{n}), (\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}} (q_{n}) \big\} \end{split}$$

$$\begin{split} \mathrm{iv.} & \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n}) = \sum_{n=1}^{N} \gamma_{n} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}) \\ & \leq \sum_{n=1}^{N} \max \gamma_{n} \left\{ \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) , \delta_{\mathbb{A}_{n}}(q_{n}) \right\} \\ & = \sum_{n=1}^{N} \max \left\{ (\gamma_{n} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n})) , (\gamma_{n} \delta_{\mathbb{A}_{n}}(q_{n})) \right\} \\ & \Rightarrow \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n}) \leq \sum_{n=1}^{N} \max \left\{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n} * q_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(q_{n}) \right\} \end{split}$$

Therefore $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{V_n} = \sum_{n=1}^{N} \left((\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}, (\delta_{\mathbb{A}})_{\gamma_n}^{V_n} \right)$ of $\sum_{n=1}^{N} \mathbb{A} = \left(\varphi_{\mathbb{A}_n}, \delta_{\mathbb{A}_n} \right) \subset \mathbb{P}$, and then for all $\gamma_n \in [0,1]$.

Theorem 4.9

For any N-generated intuitionistic fuzzy Z – sub-algebra $\sum_{n=1}^{N} \mathbb{A}$ of \mathbb{P} , $\forall \gamma_n \in [0,1]$. If γ - N-generated Intuitionistic Fuzzy Multiplication be $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{V_n}(p_n)$ of $\sum_{n=1}^{N} \mathbb{A}$ be N-generated intuitionistic fuzzy Z – sub-algebra of \mathbb{P} .

Proof:

Let $\gamma_n \in [0,1]$ and let $p_n, q_n \in \mathbb{P}$. Now,

$$\begin{split} \sum_{n=1}^{N}(\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(p_{n}*q_{n}) &= \sum_{n=1}^{N}\gamma_{n}\varphi_{\mathbb{A}_{n}}(p_{n}*q_{n}) \\ &\geq \sum_{n=1}^{N}\min\left\{\gamma_{n}(\varphi_{\mathbb{A}_{n}}(p_{n}),\varphi_{\mathbb{A}_{n}}(q_{n}))\right\} \\ &\geq \sum_{n=1}^{N}\min\left\{\gamma_{n}\varphi_{\mathbb{A}_{n}}(p_{n}),\gamma_{n}\varphi_{\mathbb{A}_{n}}(q_{n})\right\} \\ &\sum_{n=1}^{N}(\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(p_{n}*q_{n}) \geq \sum_{n=1}^{N}\min\left\{(\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(p_{n}),(\varphi_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(q_{n})\right\} \end{split}$$

$$\begin{split} \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n} * q_{n}) &= \sum_{n=1}^{N} \gamma_{n} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) \\ &\leq \sum_{n=1}^{N} \max\{\gamma_{n}(\delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \delta_{\mathbb{A}_{n}}(q_{n}))\} \\ &\leq \sum_{n=1}^{N} \max\{\gamma_{n} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \gamma_{n} \delta_{\mathbb{A}_{n}}(q_{n})\} \\ &\sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n} * q_{n}) \leq \sum_{n=1}^{N} \max\{(\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(q_{n})\} \end{split}$$

Theorem 4.10

If γ - N-generated Intuitionistic Fuzzy Multiplication be $\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{V_n}(p) = \sum_{n=1}^{N} ((\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(p), (\delta_{\mathbb{A}})_{\gamma_n}^{V_n}(p))$ of $\sum_{n=1}^{N} \mathbb{A} = (\varphi_{\mathbb{A}_n}, \delta_{\mathbb{A}_n})$ be N-generated intuitionistic fuzzy Z - sub-algebra of \mathbb{P} . Then for all N-generated intuitionistic fuzzy Z - sub-algebra $\sum_{n=1}^{N} \mathbb{A}$ of \mathbb{P} .

We assume that
$$\sum_{n=1}^{N} \mathbb{A}_{\gamma_n}^{V_n}(p_n)$$
 of $\sum_{n=1}^{N} \mathbb{A}$ in \mathbb{P} , $\forall \gamma_n \in [0,1]$.

$$\sum_{n=1}^{N} \gamma_n \varphi_{\mathbb{A}_n}(p_n * q_n) = \sum_{n=1}^{N} (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(p_n * q_n)$$

$$\geq \sum_{n=1}^{N} \min\{(\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(p_n), (\varphi_{\mathbb{A}})_{\gamma_n}^{V_n}(q_n)\}$$

$$= \sum_{n=1}^{N} \min\{\gamma_n \varphi_{\mathbb{A}_n}(p_n), \gamma_n \varphi_{\mathbb{A}_n}(q_n)\}$$

$$\begin{split} &= \sum_{n=1}^{N} \min \left\{ \gamma_{n}(\varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \varphi_{\mathbb{A}_{n}}(q_{n})) \right\} \\ \text{Implies that } \sum_{n=1}^{N} \varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) \geq \sum_{n=1}^{N} \min \left\{ \varphi_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \varphi_{\mathbb{A}_{n}}(q_{n}) \right\} \\ &\sum_{n=1}^{N} \gamma_{n} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) = \sum_{n=1}^{N} (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n} * q_{n}) \\ &\leq \sum_{n=1}^{N} \max \left\{ (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(\mathcal{P}_{n}), (\delta_{\mathbb{A}})_{\gamma_{n}}^{V_{n}}(q_{n}) \right\} \\ &= \sum_{n=1}^{N} \max \left\{ \gamma_{n} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \gamma_{n} \delta_{\mathbb{A}_{n}}(q_{n}) \right\} \\ &= \sum_{n=1}^{N} \max \left\{ \gamma_{n} (\delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \delta_{\mathbb{A}_{n}}(q_{n})) \right\} \\ &\text{Implies that } \sum_{n=1}^{N} \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n} * q_{n}) \leq \sum_{n=1}^{N} \max \left\{ \delta_{\mathbb{A}_{n}}(\mathcal{P}_{n}), \delta_{\mathbb{A}_{n}}(q_{n}) \right\} \\ &\text{Hence } \sum_{n=1}^{N} \mathbb{A} \subset \mathbb{P} \text{ be a N-generated intuitionistic fuzzy } Z - \text{sub-algebra}. \end{split}$$

Conclusion: In this paper, the new concept of a n-generated Fuzzy and Intuitionistic Fuzzy Translation and Multiplication in Z-Algebra has been define through concept of Fuzzy Translation and Fuzzy Multiplication were discussed using Z-sub algebra and Z-Ideals, as well as various algebraic properties. Z-Algebras are seen as another generalisation of BCK/BCI-algebras. Fuzzy extensions of Z-Ideals in Z-Algebras have been investigated, which adds a new dimension to the previously defined Z-Algebra. They were also used to prove various theorem.

References:

- [1] Abu Ayub Ansari and Chandramouleeswaran M: Fuzzy Translation of Fuzzy ideals of algebras, International Journal of Pure and Applied Mathematics, Vol.92 No. 5, (2014), 657-667.
- [2] Chandramouleeswaran M,Muralikrishna P, Sujatha K, Sabarinathan S: A note on Z-algebra, Italian Journal of Pure and Applied Mathematics, 38 (2017), 707–714.
- [3] Sowmiya S,Jeyalakshmi P:On Fuzzy Z-ideals in Z-algebras, Global Journal of Pure and Applied Mathematics, 15(4) (2019), 505–516.
- [4] Kyoung Ja Lee, Young Bae Jun and Myung Im Doh: Fuzzy Translations and Fuzzy Multiplication of BCK/BCI-Algebras, Commun. Korean Math. Soc. 24 (2009), No. 3, 353-360.
- [5] Priya and Ramachandran T: Fuzzy Translation and Multiplication on PS-Algebras, International Journal of Innovation in Science and Mathematics, Vol.2, No.5, (2014), 485-489.
- [6] Prasanna A, Premkumar M and Ismail Mohideen S: Fuzzy Translation and Multiplication on B-Algebras, International Journal for Science and Advance Research In Technology, Vol.4, No.4, (2018), 2898-2901.
- [7] Prasanna, PremkumarM and Ismail Mohideen S: Fuzzy Translations and fuzzy Multiplications on BG-Algebras, Proceedings in 4th AltermanInternationalConference-Cum on Computational & Geometric Algebra, (July 2019).
- [8] Zadeh L A: Fuzzy Sets, Information and Control, Vol.8, (1965), 338-353.