INVERSE OF TILDE(T) AND MINUS PARTIAL ORDERING ON INTUITIONISTIC FUZZY MATRICES

G. Punithavalli
${ }^{1}$ Assistant Professor, Department of Mathematics Annamalai University (Deputed to Government Arts College, Chidambaram), punithavarman78@gmail.com

M.Anandhkumar

Assistant Professor, Department of Mathematics, IFET College of ngineering(Autonomous), Villupuram, Tamilnadu, India, anandhkumarmm@gmail.com

Abstract

Aim of this article is to characterize the inverse or reverse T and minus orderings on Intuitionistic fuzzy matrices(IFM). Also, using the g-inverses, we discuss some Theorems and examples for the inverse or reverse T and minus ordering on IFM.

Keywords: Intuitionistic fuzzy matrices (IFM), Inverse or reverse T-ordering, Inverse or reverse minus ordering, g -inverse, Moore-penrose inverses.

1. INTRODUCTION : Let the IFM A of order m rows and n columns is in the form of $A=\left[y_{i j},<a_{i j \alpha}, a_{i j \beta}>\right]$, where $a_{i j \alpha}$ and $a_{i j \beta}$ are called the degree of membership and also the non-membership of $y_{i j}$ in A , it preserving the condition $0 \leq a_{i j \alpha}+a_{i j \beta} \leq 1$. In intuitionistic fuzzy matrices, partial ordering is significant. The idea of fuzzy matrix was first presented by Thomosan [2] in 1977 and it has further developments by various researchers. Jian Miao Chen pioneered the partial orderings on fuzzy matrices, which are comparable to the star ordering on complex matrices [3].After that, a lot of works have been done using this notion. A.R. Meenachi [1] characterizes the minus ordering on matrices in terms of their generalized inverses. Another novelty is the way she defines space ordering [6] on fuzzy matrices as a partial order on the set of all idempotent matrices in F_{n}. Partial ordering is a reflexive, antisymmetric, transitive crisp binary relation $\mathrm{R}(\mathrm{X}, \mathrm{X})$ [5]. The properties of this class of relations are denoted by the common symbol \leq. Therefore, $<\mathrm{x}, \mathrm{y}>$ represents $<\mathrm{x}, \mathrm{y}\rangle \in \mathrm{R}$ and indicates that x comes before y. The symbol $\geq[9]$ denotes the inverse partial ordering $R^{-1}(X, X)$. We say that y succeeds x if $y \leq x$ implying that $\left\langle x, y>\in R^{-1}\right.$. The symbols \leq^{P}, \leq^{Q} and \leq^{R} are used to denote the various partial orderings P, Q, and R , respectively. In this Section I, As an analogue to the star ordering on complex matrices, we start with the T inverse or reverse ordering on IFM. We explore different ordering on the IFM using a variety of generalized inverses, including g-inverse, group inverse, and Moore-penrose inverses, and we analyses how these ordering relate to T ordering[8]. We derive some equivalent conditions for each ordering by using generalized inverses[10]. Additionally, we demonstrate that these orderings are the same for a particular class of IFM. In section II we study the minus ordering for IFM as an analogue of minus ordering for complex matrix studied in [7] and as a generalization of Tordering for IFM introduced. We show that the minus ordering is only a partial ordering in the
set of all regular fuzzy matrices. Finally, we characterize the minus ordering on matrix in terms of their generalized inverses.

2. INVERSE OR REVERSE T-ORDERING ON INTUITIONISTIC FUZZY MATRICES

Definition:2.1 For A, B belongs to $(I F)_{m \times n}$ the T -ordering $\mathrm{P} \leq{ }^{\mathrm{T}} \mathrm{Q}$ is well-defined as $\mathrm{P} \leq{ }^{\mathrm{T}} \mathrm{Q}$ $\Leftrightarrow \mathrm{P}^{\mathrm{t}} \mathrm{P}=\mathrm{P}^{\mathrm{t}} \mathrm{Q}$ and $\mathrm{PP}^{\mathrm{t}}=\mathrm{QP}^{\mathrm{t}}$.
Definition:2.2 For A, B belongs to $(I F)_{m \times n}$ the $\mathrm{T}-$ Reverse (or) inverse ordering $\mathrm{P} \geq \mathrm{Q}$ is defined as $\mathrm{P} \geq \mathrm{Q} \Leftrightarrow \mathrm{Q}^{\mathrm{t}} \mathrm{Q}=\mathrm{Q}^{\mathrm{t}} \mathrm{P}$ and $\mathrm{QQ}^{\mathrm{t}}=\mathrm{PQ}^{\mathrm{t}}$.
Example:2.1 Let us consider, $P=\left[\begin{array}{ll}\langle 1,0\rangle & \langle 0,1\rangle \\ \langle 1,0\rangle & \langle 1,0\rangle\end{array}\right], Q=\left[\begin{array}{cc}\langle 1,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 1,0\rangle\end{array}\right]$.
Theorem 2.1. Let $P, Q \in(I F)_{m \times n}$ and Q^{+}exists. Then the given conditions are equivalent.
(i) $\quad \mathrm{P} \stackrel{T}{\geq} \mathrm{Q}$
(ii) $\mathrm{Q}^{+} \mathrm{Q}=\mathrm{Q}^{+} \mathrm{P}$ and $\mathrm{QQ}^{+}=\mathrm{PQ}^{+}$
(iii) $\mathrm{QQ}^{+} \mathrm{P}=\mathrm{Q}=\mathrm{PQ}^{+} \mathrm{Q}$

Proof: (i) \Rightarrow (ii), By (i) We have $\mathrm{P} \stackrel{T}{\geq} \mathrm{Q} \Leftrightarrow \mathrm{Q}^{\mathrm{t}} \mathrm{Q}=\mathrm{Q}^{\mathrm{t}} \mathrm{P}$ and $\mathrm{QQ}^{\mathrm{t}}=\mathrm{PQ}^{\mathrm{t}}$
Then $\mathrm{Q}^{+} \mathrm{Q}=\mathrm{Q}^{+} \mathrm{QQ}^{+} \mathrm{Q}=\mathrm{Q}^{+}\left(\mathrm{Q}^{+}\right)^{t} \mathrm{Q}^{t} \mathrm{Q}=\mathrm{Q}^{+}\left(\mathrm{Q}^{+}\right)^{t} \mathrm{Q}^{t} \mathrm{P}=\mathrm{Q}^{+} \mathrm{Q} \mathrm{Q}^{+} \mathrm{P}=\mathrm{Q}^{+} \mathrm{P}$
Similarly, $\mathrm{QQ}^{+}=\mathrm{PQ}^{+}$
(ii) \Rightarrow (iii) $\mathrm{Q}^{+} \mathrm{Q}=\mathrm{Q}^{+} \mathrm{P}$ implies $\mathrm{Q}=\mathrm{QQ}^{+} \mathrm{Q}=\mathrm{QQ}^{+} \mathrm{P}$ and $\mathrm{QQ}^{+}=\mathrm{PQ}^{+}$
implies $\mathrm{Q}=\mathrm{QQ}^{+} \mathrm{Q}=\mathrm{PQ}^{+} \mathrm{Q}$
(iii) \Rightarrow (i) $\mathrm{By} \mathrm{Q}=\mathrm{QQ}^{+} \mathrm{P},\left(\mathrm{QQ}^{+}\right)^{\mathrm{t}} \mathrm{Q}=\left(\mathrm{QQ}^{+}\right)^{\mathrm{t}} \mathrm{P}$

Then, $Q^{t}\left(Q^{t}\right)^{t} Q^{t} Q=Q^{t}\left(Q^{+}\right)^{t} Q^{t} P$. Hence $Q^{t} Q=Q^{t} P$
Similarly, $\mathrm{QQ}^{\mathrm{t}}=\mathrm{PQ}^{\mathrm{t}}$ by $\mathrm{Q}=\mathrm{PQ}^{+} \mathrm{Q}$
Theorem 2.2 Let $P, Q \in(I F)_{m \times n}$ If P^{+}and Q^{+}both exists. Then the given conditions are equivalent.

$$
\begin{equation*}
P \stackrel{T}{\geq} Q \tag{i}
\end{equation*}
$$

(ii) $\mathrm{Q}^{+} \mathrm{Q}=\mathrm{P}^{+} \mathrm{Q}$ and $\mathrm{QQ}^{+}=\mathrm{QP}^{+}$
(iii) $\mathrm{P}^{+} \mathrm{QQ}^{+}=\mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{QP}^{+}$
(iv) $\mathrm{Q}^{\mathrm{t}} \mathrm{QP}^{+}=\mathrm{Q}^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{Q}^{\mathrm{Q}}$

Proof: (i) \Rightarrow (iv) $\mathrm{Q}^{\mathrm{t}} \mathrm{Q}=\mathrm{Q}^{\mathrm{t}} \mathrm{P}$ implies $\mathrm{Q}^{\mathrm{t}} \mathrm{Q}=\mathrm{Q}^{\mathrm{t}} \mathrm{PP}^{+} \mathrm{P}$
Then $Q^{t} \mathrm{Q}=\left(\mathrm{Q}^{\mathrm{t}} \mathrm{Q}\right)^{\mathrm{t}}=\left(\mathrm{P}^{+} \mathrm{P}\right)^{\mathrm{t}}\left(\mathrm{Q}^{\mathrm{t}} \mathrm{P}\right)^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{PQ}^{\mathrm{t}} \mathrm{Q}$
Hence, $\mathrm{Q}^{\mathrm{t}} \mathrm{QQ}^{+}=\mathrm{P}^{+} \mathrm{PQ}^{\mathrm{t}} \mathrm{QQ}^{+}$and $\mathrm{Q}^{\mathrm{t}}\left(\mathrm{QQ}^{+}\right)^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{PQ}^{\mathrm{t}}\left(\mathrm{QQ}^{+}\right)^{\mathrm{t}}$
Therefore, $\mathrm{Q}^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{PQ}^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{QQ}^{\mathrm{t}}$
Similarly, $\mathrm{Q}^{\mathrm{t}}=\mathrm{Q}^{\mathrm{t}} \mathrm{QP}^{+}$by $\mathrm{QQ}^{\mathrm{t}}=\mathrm{PQ}^{\mathrm{t}}$
(iv) \Rightarrow (ii) $B y \mathrm{Q}^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{QQ}^{\mathrm{t}}, \mathrm{Q}^{\mathrm{t}}\left(\mathrm{Q}^{+}\right)^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{QQ}^{\mathrm{t}}\left(\mathrm{Q}^{+}\right)^{\mathrm{t}}$

Then, $\mathrm{Q}^{+} \mathrm{Q}=\mathrm{P}^{+} \mathrm{QQ}^{+} \mathrm{Q}=\mathrm{P}^{+} \mathrm{Q}$

Similarly, $\mathrm{QQ}^{+}=\mathrm{QP}^{+}$and $\mathrm{Q}^{\mathrm{t}}=\mathrm{Q}^{\mathrm{t}} \mathrm{QP}^{+}$
(ii) \Rightarrow (i) $\mathrm{Q}^{+} \mathrm{Q}=\left(\mathrm{Q}^{+} \mathrm{Q}\right)^{\mathrm{t}}=\left(\mathrm{P}^{+} \mathrm{Q}\right)^{\mathrm{t}}=\left(\mathrm{P}^{+} \mathrm{PP}^{+} \mathrm{Q}\right)^{\mathrm{t}}=\left(\mathrm{P}^{+} \mathrm{Q}\right)^{\mathrm{t}}\left(\mathrm{P}^{+} \mathrm{P}\right)^{\mathrm{t}}=\left(\mathrm{Q}^{+} \mathrm{Q}\right)^{\mathrm{t}} \mathrm{P}^{+} \mathrm{P}=\mathrm{Q}^{+} \mathrm{QP}^{+} \mathrm{P}=\mathrm{Q}^{+} \mathrm{QQ}^{+} \mathrm{P}$ $=\mathrm{Q}^{+} \mathrm{P}$
Similarly, we have $\mathrm{QQ}^{+}=\mathrm{PQ}^{+}$. Thus (i) holds by Theorem 2.1 (ii)
(ii) \Rightarrow (iii) $\mathrm{By}^{+} \mathrm{Q}^{+}=\mathrm{P}^{+} \mathrm{Q}, \mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{QQ}^{+}=\mathrm{P}^{+} \mathrm{QQ}^{+}$

Similarly, $\mathrm{QQ}^{+}=\mathrm{QP}^{+}$implies $\mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{QP}^{+}$
(iii) \Rightarrow (ii) $\mathrm{P}^{+} \mathrm{QQ}^{+}=\mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{QP}^{+}$implies $\mathrm{Q}^{+} \mathrm{Q}=\mathrm{P}^{+} \mathrm{QQ}^{+} \mathrm{Q}=\mathrm{P}^{+} \mathrm{Q}$ and $\mathrm{QQ}^{+}=\mathrm{QQ}^{+} \mathrm{QP}^{+}=\mathrm{QP}^{+}$

Theorem 2.3 In $(I F)^{+}{ }_{m \times n}$, the set of all IFM $P \in(I F)_{m \times n}$ for which P^{+}exists ${ }^{T}$ is a partial ordering.
Proof: $R \stackrel{T}{\geq} R$ obvious. If $R \stackrel{T}{\geq} Q, Q \xrightarrow{T} R$ then $\mathrm{R}=\mathrm{QR}^{+} \mathrm{R}, \mathrm{P}=\mathrm{PP}^{+} \mathrm{R}$ by theorem 2.1 (iii). Thus, by Theorem 2.2(ii) $\mathrm{P}=\mathrm{PP}^{+} \mathrm{Q}=\mathrm{PQ}^{+} \mathrm{Q}=\mathrm{Q}$
If $R \stackrel{T}{\geq} Q, Q \geq P$ then $\mathrm{R}=\mathrm{QR}^{+} \mathrm{R}$ and $\mathrm{Q}=\mathrm{PQ}^{+} \mathrm{Q}$ by Theorem 2.1 (iii) and Theorem 2.2(ii), we have $\mathrm{R}=\mathrm{QR}^{+} \mathrm{R}=\mathrm{PQ}^{+} \mathrm{QR}^{+} \mathrm{R}=\mathrm{PQ}^{+} \mathrm{R}=\mathrm{PR}^{+} \mathrm{R}$
Similarly, we have $\mathrm{R}=\mathrm{RR}^{+} \mathrm{P}$. Thus, $R^{T} \geq P$ by Theorem 2.1 (iii)
Example:2.2 Let $Q=\left[\begin{array}{ll}\langle 1,0\rangle & <0,1\rangle \\ \langle 1,0\rangle & <1,0\rangle\end{array}\right], P=\left[\begin{array}{ll}\langle 1,0\rangle & <1,0\rangle \\ \langle 1,0\rangle & <1,0\rangle\end{array}\right]$. For $\mathrm{Q}, Q Q^{t} Q \neq Q$. Therefore Q^{+}does not exists. Here $Q \stackrel{T}{\geq} P$ and $P{ }^{T} Q$ but, $Q \neq P$. Thus ${ }^{T}$ is not a partial ordering in $(I F)_{m \times n}$.

Theorem 2.4 If $P \stackrel{T}{\geq} Q$ then we have
(i) $\mathrm{P}^{+} \mathrm{Q}=\mathrm{Q}^{+} \mathrm{P}$ and $\mathrm{QP}^{+}=\mathrm{PQ}^{+}$
(ii) $\quad \mathrm{P}^{\mathrm{t}} \mathrm{Q}=\mathrm{Q}^{\mathrm{t}} \mathrm{P}$ and $\mathrm{PQ}^{\mathrm{t}}=\mathrm{QP}^{+}$(i.e) $\mathrm{P}^{\mathrm{t}} \mathrm{Q}$ and PQ^{t} are symmetric,
(iii) $\mathrm{QP}^{+} \mathrm{Q}=\mathrm{Q}=\mathrm{PP}^{+} \mathrm{Q}=\mathrm{PQP}^{+}=\mathrm{P}^{+} \mathrm{QP}, \mathrm{PQ}^{+} \mathrm{Q}=\mathrm{Q}=\mathrm{QQ}^{+} \mathrm{P}=\mathrm{QPQ}^{+}=\mathrm{Q}^{+} \mathrm{PQ}$
(iv) $\quad \mathrm{PQ}^{\mathrm{t}} \mathrm{Q}=\mathrm{QQ}^{t} \mathrm{P}=\mathrm{Q}^{\mathrm{t}} \mathrm{PQ}=\mathrm{QPQ}^{\mathrm{t}}, \mathrm{QP}^{\mathrm{t}} \mathrm{P}=\mathrm{PP}^{\mathrm{t}} \mathrm{Q}=\mathrm{P}^{\mathrm{t}} \mathrm{QP}=\mathrm{PQQ}^{\mathrm{t}}$

Theorem 2.5 If $P \stackrel{T}{\geq} Q$,then we have
(i) $P^{t} \stackrel{T}{\geq} Q^{t}$
(ii) $P^{+} \geq Q^{+}$
(iii) $\quad P^{t} Q \stackrel{T}{\geq} P^{t} P, Q P^{t} \stackrel{T}{\geq} Q Q^{t}$
(iv) $\quad P^{+} Q \stackrel{T}{\geq} P^{+} P, Q P^{+} \stackrel{T}{\geq} P P^{+}$
(v) $\quad P^{t} P{ }^{T} \geq Q^{t} Q, P P^{t}{ }^{T} \geq Q Q^{t}$
(vi) $\quad P^{+} P \stackrel{T}{\geq} Q^{+} Q, P P^{+} \stackrel{T}{\geq} Q Q^{+}$
(vii) If $\mathrm{P}^{\mathrm{t}} \mathrm{P}^{+}=\mathrm{P}^{+} \mathrm{P}^{\mathrm{t}}$ then $\mathrm{Q}^{\mathrm{t}} \mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{Q}^{\mathrm{t}}$
(viii) if $\mathrm{P}^{+}=\mathrm{P}^{\mathrm{t}}$ then $\mathrm{Q}^{+}=\mathrm{Q}^{\mathrm{t}}$
(ix) if $\mathrm{P}^{2}=0$ then $\mathrm{Q}^{2}=0$
(x) if $\mathrm{P}=\mathrm{P}^{2}$ then $\mathrm{Q}=\mathrm{Q}^{2}$
(xi) \quad if $\mathrm{P}=\mathrm{PP}^{\mathrm{T}}$ then $\mathrm{Q}=\mathrm{QQ}^{\mathrm{t}}$
(xii) if $\mathrm{P}=\mathrm{P}^{\mathrm{T}}=\mathrm{P}^{3}$ and $\mathrm{Q}=\mathrm{Q}^{\mathrm{t}}$ then $\mathrm{Q}=\mathrm{Q}^{3}$

Proof: (i) and (ii) hold clearly.
iii. $\left(P^{t} Q\right)^{t} P^{t} Q=Q^{t} P P^{t} Q=Q^{t} Q Q^{t} Q=Q^{t} Q Q^{t} P=Q^{t} Q P^{t} P=Q^{t} P P^{t} P$

Similarly, $P^{t} Q\left(Q^{t} Q\right)^{t}=P^{t} P\left(P^{t} Q\right)^{t}$, Thus $P^{t} Q \geq P^{t} P$.
Similarly, we have, $Q P^{t} \geq P P^{T}$
iv. $\left(P^{+} Q\right)^{t} P^{+} Q=\left(Q^{+} Q\right)^{t} Q^{+} Q=Q^{t}\left(Q^{+}\right)^{t} Q^{+} Q=Q^{t}\left(Q^{+}\right)^{t} Q^{+} P=Q^{t}\left(Q^{+}\right)^{t} P^{+} P=\left(Q^{+} Q\right)^{t} P^{+} P$ $=\left(P^{+} Q\right)^{t} P^{+} P$ and $P^{+} Q\left(P^{+} Q\right)^{T}=P^{+} P\left(P^{+} Q\right)^{T}$. Thus $P^{+} Q \geq P^{+} P$
Similarly we have $Q P^{+} \geq P P^{+}$
v. $P^{t} P{ }^{T} \geq Q^{t} Q, P P^{t} \geq Q Q^{t}$
$\left(Q^{t} Q\right)^{t} Q^{t} Q=Q^{t} Q Q^{t} P=Q^{t} Q P^{t} P=\left(Q^{t} Q\right)^{t} P^{t} P$ and $Q^{t} Q\left(Q^{t} Q\right)^{t}=P^{t} P\left(Q^{t} Q\right)^{t}$
$P^{t} P{ }^{T} Q^{t} Q$
Similarly, $P P^{t} \stackrel{T}{\geq} Q Q^{t}$
vi. $P^{+} P \stackrel{T}{\geq} Q^{+} Q, P P^{+} \stackrel{T}{\geq} Q Q^{+}$
$\left(Q^{+} Q\right)^{t} P^{+} P=Q^{t}\left(Q^{+}\right)^{t} P^{+} P=Q^{t}\left(Q^{+}\right)^{t} Q^{+} P=Q^{t}\left(Q^{+}\right)^{t} Q^{+} Q=\left(Q^{+} Q\right)^{t} Q^{+} Q$
and $P^{+} P\left(Q^{+} Q\right)^{t}=Q^{+} Q\left(Q^{+} Q\right)^{t} \quad\left(\mathrm{Q}^{\mathrm{t}} \mathrm{Q}=\mathrm{Q}^{\mathrm{t}}\right.$ and $\left.\mathrm{QQ}^{\mathrm{t}}=\mathrm{PQ}^{\mathrm{t}}\right)$
vii. If $\mathrm{P}^{\mathrm{t}} \mathrm{P}^{+}=\mathrm{P}^{+} \mathrm{P}^{\mathrm{t}}$ then $\mathrm{Q}^{\mathrm{t}} \mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{Q}^{\mathrm{t}}$
$\mathrm{Q}^{\mathrm{t}} \mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{QP}^{t \mathrm{P}^{+}} \mathrm{QQ}^{+}=\mathrm{Q}^{+} \mathrm{QP}^{+} \mathrm{P}^{t} \mathrm{QQ}^{+}=\mathrm{Q}^{+} \mathrm{Q}^{\mathrm{t}}$
viii. if $\mathrm{P}^{+}=\mathrm{P}^{\mathrm{t}}$ then $\mathrm{Q}^{+}=\mathrm{Q}^{\mathrm{t}}$
$\mathrm{Q}^{+}=\mathrm{Q}^{+} \mathrm{Q}^{+}=\mathrm{P}^{+} \mathrm{QQ}^{+}=\mathrm{P}^{+} \mathrm{QP}^{+}=\mathrm{P}^{+} \mathrm{QP}^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{QQ}^{\mathrm{t}}=\mathrm{Q}^{\mathrm{t}}$
ix.if $\mathrm{P}^{2}=0$ then $\mathrm{Q}^{2}=0$
$\mathrm{Q}^{2}=\mathrm{QP}^{+} \mathrm{PPP}^{+} \mathrm{Q}=\mathrm{QP}^{+} \mathrm{P}^{2} \mathrm{P}^{+} \mathrm{Q}=0$
x.if $\mathrm{P}=\mathrm{P}^{2}$ then $\mathrm{Q}=\mathrm{Q}^{2}$
$\mathrm{Q}^{2}=\mathrm{QP}^{+} \mathrm{PPP}^{+} \mathrm{Q}=\mathrm{QP}^{+} \mathrm{PP}^{+} \mathrm{Q}=\mathrm{QP}^{+} \mathrm{Q}=\mathrm{QQ}^{+} \mathrm{Q}=\mathrm{Q}$
xi.if $\mathrm{P}=\mathrm{PP}^{\mathrm{t}}$ then $\mathrm{Q}=\mathrm{QQ}^{\mathrm{t}}$

By $\mathrm{P}=\mathrm{PP}^{\mathrm{t}}$, we have $\mathrm{P}^{\mathrm{t}}=\mathrm{P}$ and $\mathrm{P}^{+}=\mathrm{P}$
Then $\mathrm{QQ}^{\mathrm{t}}=\mathrm{PQ}^{\mathrm{t}}=\mathrm{PP}^{\mathrm{t}} \mathrm{Q}=\mathrm{PPQ}^{\mathrm{t}}=\mathrm{PQQ}^{\mathrm{t}}=\mathrm{P}^{+} \mathrm{QQ}^{\mathrm{t}}=\mathrm{Q}^{\mathrm{t}}=\mathrm{Q}$
xii. $\mathrm{Q}^{3}=\mathrm{QQ}^{\mathrm{t}} \mathrm{Q}=\mathrm{PQ}^{\mathrm{t}} \mathrm{QQ}^{+} \mathrm{P}=\mathrm{PP}^{\mathrm{t}} \mathrm{QQ}^{+} \mathrm{P}=\mathrm{PP}^{\mathrm{t}} \mathrm{PQ}^{+} \mathrm{P}=\mathrm{PQ}^{+} \mathrm{P}=\mathrm{PP}^{+} \mathrm{Q}=\mathrm{Q}$

3.INVERSE OR REVERSE MINUS ORDERING ON IFM

Definition:3.1 For $P \in(I F)_{m, n}^{-}$and $Q \in(I F)_{m \times n}$ the inverse or Reverse minus ordering as \geq is defined as $P \geq Q \Leftrightarrow Q^{-} Q=Q^{-} P$ and $Q Q^{-}=P Q^{-}$for some $Q^{-} \in Q\{1\}$
To specify the minus ordering with respect to particular g-inverse of P , let us write $P \geq Q$ with respect to $X \Leftrightarrow X Q=X P$ and $Q X=P X$ for $X \in Q\{1\}$.

Remark :3.1 For $Q \in(I F)_{m, n}^{-}$and $P \in(I F)_{m \times n}$ if Q^{+}exists, then Q^{+}is unique and $\mathrm{Q}^{+}=\mathrm{Q}^{\mathrm{T}}$ we have, $P \stackrel{T}{\geq} Q \Leftrightarrow P \geq Q$ with respect to $Q^{+} \Leftrightarrow Q^{t} Q=Q^{t} P$ and $Q Q^{t}=P Q^{t}$, which is precisely Definition 2.1 of T-ordering. Thus T-ordering is a special case of minus ordering. However the converse $P \geq Q \Rightarrow P \stackrel{T}{\geq} Q$ need not be true.
Example:3.1 Let us consider, $P=\left[\begin{array}{cc}\langle 1,0\rangle & \langle 1,0\rangle \\ \langle 0,0\rangle & \langle 0,0\rangle\end{array}\right], Q=\left[\begin{array}{cc}\langle 1,0\rangle & \langle 1,0\rangle \\ \langle 0,0\rangle & \langle 0,0\rangle\end{array}\right]$. Since Q^{t} is a g-inverse of $\mathrm{Q}, \mathrm{Q}^{+}$exist and $\mathrm{Q}^{+}=\mathrm{Q}^{\mathrm{t}}$ also Q is idempotent, Q itself is a g-inverse of $\mathrm{Q}, \mathrm{Q}=$ $\mathrm{QP}=\mathrm{PQ} \quad$ implies $\quad P \geq Q$ with respect to Q . $Q^{t} Q \neq Q^{t} P$ and $Q Q^{t} \neq P Q^{t}$. Hence $P \geq Q$ notimplies $P \geq Q$.
Theorem:3.1 For $Q \in(I F)^{-}$,n and $P \in(I F)_{m \times n}$ the given conditions are equivalent
(i) $P \geq Q$
(ii) $\quad Q=Q Q^{-} P=P Q^{-} Q=P Q^{-} P$

Proof: (i) \Rightarrow (ii)
$P \geq Q \Leftrightarrow Q^{-} Q=Q^{-} P$ and $Q Q^{-}=P Q^{-}$for some $Q^{-} \in Q\{1\}$
Now, $Q=Q\left(Q^{-} Q\right)=Q Q^{-} P$
$Q=\left(Q Q^{-}\right) Q=P Q^{-} Q$
$Q=P\left(Q^{-} Q\right)=P Q^{-} P$
(ii) \Rightarrow (i)

Let $X=Q^{-} Q Q^{-}$
$Q X Q=Q\left(Q^{-} Q Q^{-}\right) Q=\left(Q Q^{-} Q\right) Q^{-} Q=Q \Rightarrow X \in Q\{1\}$
Now, $X Q=\left(Q^{-} Q Q^{-}\right) Q Q^{-} P$
$=Q^{-}\left(Q Q^{-} Q\right) Q^{-} P$

$$
\begin{aligned}
& =\left(Q^{-} Q Q^{-}\right) P \\
& =X P
\end{aligned}
$$

Similarly, $\mathrm{QX}=\mathrm{PX}$
Hence $P \geq Q$ with respect to $X \in Q\{1\}$
Remark :3.2 In general, in the definition of minus ordering $P \geq Q$, P need not be regular. This is illustrated in the following example.
Example:3.2 Let us consider
$P=\left[\begin{array}{ccc}\langle 1,0\rangle & <1,0\rangle & <0,0\rangle \\ \langle 0,0\rangle & <1,0\rangle & <1,0\rangle \\ \langle 0,0\rangle & <0,0\rangle & <1,0\rangle\end{array}\right], Q=\left[\begin{array}{ccc}\langle 1,0\rangle & <1,0\rangle & <1,0\rangle \\ \langle 1,0\rangle & <1,0\rangle & <1,0\rangle \\ \langle 1,0\rangle & <1,0\rangle & <1,0\rangle\end{array}\right]$
Since Q is idempotent, Q is regular and Q itself is a g - inverse of Q . Here $\mathrm{Q}=\mathrm{QP}=\mathrm{PQ}$. Hence $P \geq Q$ which implies $Q=Q^{-} \in Q\{1\}$. If P is not regular ,since there is no $X \in F_{3}$ such that $\mathrm{PXP}=\mathrm{P}$
Theorem:3.2 Let $P, Q \in(I F)_{m, n}^{-}$. If $P \geq Q$,then $P\{1\} \subseteq Q\{1\}$
Proof: $P \geq Q \Rightarrow Q=Q Q^{-} P=P Q^{-} Q$
For, $P^{-} \in P\{1\}$
$Q P^{-} Q=\left(Q Q^{-} P\right) P^{-}\left(P Q^{-} Q\right)$
$Q P^{-} Q=Q Q^{-}\left(P P^{-} P\right) Q^{-} Q$

$$
=\left(Q Q^{-} P\right) Q^{-} Q=Q Q^{-} Q=Q
$$

Hence, $Q P^{-} Q=Q$ for each $P^{-} \in P\{1\}$
Therefore, $P\{1\} \subseteq Q\{1\}$
Theorem:3.3 If $P \geq Q$ and Q is idempotent then Q is a g-inverse of P .
Proof. Let P itself is a g-inverse of P then P is regular, P is idempotent. Here $P \in P\{1\}$. Then by above property $\mathrm{P}\{1\} \subseteq \mathrm{Q}\{1\}$. Hence P is a g -inverse of Q .

Example.3.3 Let us Consider

$P=\left[\begin{array}{ll}\langle 1,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 0,1\rangle\end{array}\right], Q=\left[\begin{array}{cc}\langle 1,0\rangle & \langle 1,0\rangle \\ \langle 0.5,0.5\rangle & <0,1\rangle\end{array}\right]$
P is not idempotent.
$Q\{1\}=\left\{X: X=\left[\begin{array}{cc}<1,0> & <\beta, 0> \\ <1,0> & <\alpha, 0>\end{array}\right], 0.5 \leq \beta \leq 1\right.$, and $\left.0 \leq \alpha \leq 1\right\}$
Here, $P \geq Q$ for
$Q=\left[\begin{array}{cc}<0,1> & <0.5,0> \\ <1,0> & <1,0>\end{array}\right]$ but $P \notin Q\{1\}$
Theorem3.3 For $P, Q \in(I F)_{m, n}^{-}$then the given conditions are equivalent
(i) $P \geq Q$
(ii) $Q=Q P^{-} P=P P^{-} Q=Q P^{-} Q$ for all $P^{-} \in P\{1\}$
(iii) $\quad R(Q) \subseteq R(P), C(Q) \subseteq C(P)$ and $Q P^{-} Q=Q$

Proof: (i) \Rightarrow (ii): $Q=P Q^{-} P \quad$ (By theorem 3.1)
$=P Q^{-}\left(P P^{-} P\right)$
$=\left(P Q^{-} P\right) P^{-} P$
$=Q P^{-} P$
(By theorem 3.1)
Therefore, $Q=Q P^{-} P$ for each $P^{-} \in P\{1\}$
Similarly, we have $Q=P P^{-} Q$ for each $P^{-} \in P\{1\}$
Also, $Q=Q P^{-} Q$
(By theorem 3.1)
(ii) \Rightarrow (iii): $Q=Q P^{-} P=P P^{-} Q=Q P^{-} Q$ for all $P^{-} \in P\{1\}$
$Q=Q P^{-} P$ for all $P^{-} \in P\{1\}$
$Q=X P P^{-} P, \quad \mathrm{Q}=\mathrm{XP}$
$Q=X P \Leftrightarrow R(Q) \subseteq R(P)$
$Q=P P^{-} Q$ for all $P^{-} \in P\{1\}$
$Q=P P^{-} P Y$
$Q=P Y \Leftrightarrow C(Q) \subseteq C(P)$,
(iii) \Rightarrow (i):Let $X=P^{-} Q P^{-}$
$Q X Q=Q\left(P^{-} Q P^{-}\right) Q$
$Q X Q=\left(Q P^{-} Q\right) P^{-} Q$
$=Q P^{-} Q=Q \Rightarrow X \in Q\{1\}$
Now, $Q X=Q\left(P^{-} Q P^{-}\right)$
$=P P^{-} Q\left(P^{-} Q P^{-}\right)$
$=P P^{-}\left(Q P^{-} Q\right) P^{-}$
$=P P^{-} Q P^{-}$
$=P X$
Similarly, $\mathrm{XQ}=\mathrm{XP}$ and $Q P^{-} Q=Q$
Hence $P \geq Q$ with respect to $X \in Q\{1\}$
Theorem3.4 For $(I F)^{-}$,n the minus ordering \geqis a partial ordering.
Proof: (i) $R \geq R$ is obvious .Hence \geq is reflexive.
ii. $R \geq Q \Rightarrow R=Q R^{-} Q$

$$
\begin{aligned}
& Q \geq R \Rightarrow Q=Q Q^{-} R=R Q^{-} Q \\
& R=Q R^{-} Q \\
& =\left(Q Q^{-} R\right) R^{-}\left(R Q^{-} Q\right) \\
& =Q Q^{-}\left(R R^{-} R\right) Q^{-} Q \\
& =Q Q^{-}\left(R Q^{-} Q\right) \\
& =Q Q^{-} Q \\
& =Q
\end{aligned}
$$

Thus, $R \geq Q$ and $Q \geq R \Rightarrow R=Q$.Hence \geq is antisymmentric.
iii. $R \geq Q \Rightarrow R=R Q^{-} A$ and $R=R Q^{-} Q=Q Q^{-} R$

$$
Q \geq P \Rightarrow Q=Q Q^{-} P=P Q^{-} Q
$$

Let $X=Q^{-} R Q^{-}$.Then $R X R=R\left(Q^{-} R Q^{-}\right) R=\left(R Q^{-} R\right) Q^{-} R=R Q^{-} R=R$
Since, $R \geq Q$ and $Q \geq P$ Applying Theorem 3.2 repeatedly, we have

$$
\begin{aligned}
R X & =R\left(Q^{-} R Q^{-}\right) \\
& =Q Q^{-} R\left(Q^{-} R Q^{-}\right) \\
& =Q Q^{-}\left(R Q^{-} R\right) Q^{-} \\
& =Q Q^{-} R Q^{-} \\
& =\left(P Q^{-} Q\right) Q^{-} R Q^{-} \\
& =P Q^{-}\left(Q Q^{-} R\right) Q^{-} \\
& =P\left(Q^{-} R Q^{-}\right) \\
& =P X
\end{aligned}
$$

Similarly, $\mathrm{XR}=\mathrm{XP}$. Since $X \in R\{1\}$ with $\mathrm{RX}=\mathrm{PX}$ and $\mathrm{XR}=\mathrm{XP}$ it follows that, $R \geq P$.
Theorem 3.5 For $P \in(I F)_{m, n}^{-}$and $Q \in(I F)_{m \times n}$ the given conditions are equivalent
(i) $\quad P \geq Q \Leftrightarrow P^{t} \geq Q^{t}$
(ii) $\quad P \geq Q \Leftrightarrow R P S \geq R Q S$ for some invertible matrices R and S

Proof: $P \geq Q \Leftrightarrow Q Q^{-}=P Q^{-}$and $Q^{-} Q=Q^{-} P$

$$
\begin{aligned}
& \Leftrightarrow\left(Q Q^{-}\right)^{t}=\left(P Q^{-}\right)^{t} \\
& \Leftrightarrow\left(Q^{-}\right)^{t} Q^{t}=\left(Q^{-}\right)^{t} P^{t} \\
& \Leftrightarrow\left(Q^{t}\right)^{-} Q^{t}=\left(Q^{t}\right)^{-} P^{t}
\end{aligned}
$$

$Q Q^{-}=P Q^{-} \Leftrightarrow\left(Q^{t}\right)^{-} Q^{t}=\left(Q^{t}\right)^{-} P^{t}$
Similarly, $Q^{-} Q=Q^{-} P \Leftrightarrow Q^{t}\left(Q^{t}\right)^{-}=P^{t}\left(Q^{t}\right)^{-}$

Hence, $P \geq Q \Leftrightarrow P^{t} \geq Q^{t}$
(ii) $P \geq Q \Leftrightarrow R P S \geq R Q S$ for some invertible matrices R and S $P \geq Q \Leftrightarrow Q Q^{-}=P Q^{-}$and $Q^{-} Q=Q^{-} P$
Since P is regular which implies $R P S$ is also regular and $S^{T} P^{-} R^{T}$ a g-inverse of $R P S$
$(R Q S)^{-}(R Q S)=\left(S^{t} Q^{-1} R^{t}\right) S Q R$
$(R Q S)^{-}(R Q S)=S^{t} Q^{-1}\left(R^{t} R\right) Q S$
$(R Q S)^{-}(R Q)=S^{t}\left(Q^{-1} Q\right) S$
$(P D Q)^{-}(P D Q)=S^{t}\left(Q^{-1} P\right) S$
$(P D Q)^{-}(P D Q)=\left(S^{t} Q^{-1} R^{t}\right)(R P S)$
$(P D Q)^{-}(P D Q)=(R Q S)^{-}(R P S)$
Similarly, $(R Q S)(R Q S)^{-}=(R P S)(R Q S)^{-}$
Hence, $P \geq Q \Rightarrow(R P S) \geq(R Q S)$
Conversly, $(R P S) \geq(R Q S) \Rightarrow R^{t}(R P S) S^{t} \geq R^{t}(R Q S) S^{t}$
$\Rightarrow P \geq Q$
Corollary:3.1 For $P, Q \in(I F)^{+}{ }_{m, n}, P \geq Q$ with respect to $P^{+} \Leftrightarrow P^{+} \geq Q^{+}$with respect to C.
Theorem 3.6 For $P \in(I F)_{m, n}^{-}$and $Q \in(I F)_{m \times n}$ with $P \geq Q$
(i) If $P=P^{2}$, then $Q=Q^{2}$
(ii) If $P^{2}=0$, then $Q^{2}=0$

Proof: $Q^{2}=Q Q$
$=\left(Q Q^{-} P\right)\left(P Q^{-} Q\right)$
$=Q Q^{-} P^{2} Q^{-} Q$
$=\left(Q Q^{-} P\right) Q^{-} Q$
$=Q Q^{-} Q=Q$
$Q^{2}=Q Q=\left(Q Q^{-} P\right)\left(P Q^{-} Q\right)=Q Q^{-} P^{2} Q^{-} Q=0$
Remark:3.3 In the above Theorem 3.1 if $P \geq Q$ with Q idempotent then P need not be idempotent .Consider $P=\left[\begin{array}{ll}\langle 0,0\rangle & \langle 1,0\rangle \\ \langle 1,0\rangle & \langle 0,0\rangle\end{array}\right], Q=\left[\begin{array}{ll}\langle 1,0\rangle & <1,0\rangle \\ \langle 1,0\rangle & \langle 1,0\rangle\end{array}\right]$. Here $P \geq Q$ with respect to $Q^{-}=Q$.But P is not idempotent.
Theorem 3.7 For $P, Q \in(I F)^{+}{ }_{m, n}, P \stackrel{T}{\geq} Q \Leftrightarrow P \geq Q$ and $P Q^{+} P=Q$

Proof: $P \stackrel{T}{\geq} Q$ and by remark (3.1) it follows that $P \geq Q$ and $Q Q^{+} B=Q \Rightarrow Q=P Q^{+} P$ Conversely: if $P \geq Q$ by Theorem 3.3 $Q=Q P^{-} Q$ for all $P^{-} \in P\{1\}$. Since $P \in(I F)^{+}{ }_{m, n}$ P^{+}exist and $\mathrm{P}^{\mathrm{t}}=\mathrm{P}^{+}$is a g -inverse of P , hence $\mathrm{Q}=\mathrm{QP}^{+} \mathrm{Q}=\mathrm{QP}{ }^{\mathrm{t}} \mathrm{Q}$
Now, $\mathrm{QQ}^{\mathrm{t}}=\mathrm{Q}\left(P Q^{+} P\right)^{\mathrm{t}}$
$Q Q^{t}=Q P^{t} Q P^{t}$
$=\left(Q P^{t} Q\right) P^{t}$
$Q Q^{t}=Q P^{t}$
Thus, $Q Q^{t}=Q P^{t} \Rightarrow Q Q^{t}=P Q^{t}$
(Taking transpose on both sides)
Similarly, we have $Q^{t} Q=Q^{t} P$
Hence, $P \stackrel{T}{\geq} Q$
Theorem 3.8 For $P, Q \in(I F)_{m, n}^{+}$the following conditions are equivalent
i. $P \geq Q$ with respect to $Q^{+}(P \stackrel{T}{\geq})$
ii. $P \in Q^{+}\{1,3,4\}$
iii. $P^{+} \in Q\{1,3,4\}$

Proof: (i) \Rightarrow (ii) $P \geq Q_{\text {with respect to }} Q^{+} \Rightarrow Q^{+} Q=Q^{+} P$ and $Q Q^{+}=P Q^{+}$
Now, $Q^{+}=Q^{+} Q Q^{+}=Q^{+} P Q^{+} \Rightarrow P \in Q^{+}\{1\}$
$\left(Q^{+} P\right)^{t}=\left(Q^{+} Q\right)^{t}=Q^{+} Q=Q^{+} P \Rightarrow P \in Q^{+}\{3\}$
$\left(P Q^{+}\right)^{t}=\left(Q Q^{+}\right)^{t}=Q Q^{+}=P Q^{+} \Rightarrow P \in Q^{+}\{4\}$
(ii) \Rightarrow (iii) Since $Q^{+}=Q^{t}$ and $P^{+}=P^{t}$, We have, $P \in Q^{+}\{1,3,4\} \Rightarrow P^{+} \in Q\{1,3,4\}$
(iii) \Rightarrow (i) $P^{+} \in Q\{1,3,4\} \Rightarrow Q P^{+} Q=Q,\left(Q P^{+}\right)^{t}=Q P^{+}=P Q^{+}$and $\left(P^{+} Q\right)^{t}=P^{+} Q=Q^{+} P$
$Q^{+} Q=Q^{+} Q\left(P^{+} Q\right)=\left(Q^{+} Q Q^{+}\right) P=Q^{+} P$
$Q Q^{+}=\left(Q P^{+} Q\right) Q^{+}=\left(Q P^{+}\right) Q Q^{+}=P Q^{+} Q Q^{+}=P Q^{+}$
Hence $P \geq Q$ with respect to Q^{+}

Theorem 3.9 For $P, Q, R \in(I F)^{+}{ }_{m, n}, R \in P\{2\}$ and $Q \geq R$ then $Q \in P\{2\}$.

Proof:

$$
\begin{aligned}
& Q \geq R \Rightarrow R R^{-} Q=Q R^{-} R=Q R^{-} Q=Q \\
& Q P Q=\left(Q R^{-} R\right) P\left(R R^{-} Q\right) \\
& =Q R^{-}(R P R) R^{-} Q
\end{aligned}
$$

$$
\begin{aligned}
& =Q R^{-}\left(R R^{-} Q\right) \\
& =Q R^{-} Q \\
& =Q
\end{aligned}
$$

Hence, $Q \in P\{2\}$.

Conclusion:

We derive some equivalent conditions for each ordering by using generalized inverses. Additionally, we demonstrate that these orderings are the same for a particular class of IFM. we study the minus ordering for IFM as an analogue of minus ordering for complex matrix studied and as a generalization of T- ordering for IFM introduced. We show that the minus ordering is only a partial ordering in the set of all regular fuzzy matrices. Finally, we characterize the minus ordering on matrix in terms of their generalized inverses.

REFERENCES

[1] Meenakshi.A.R., and Inbam.C, The minus partial order in Fuzzy matrices , The Journal of Fuzzy matrices, Vol. 12 (3) (2004),PP 695-700.
[2] M.G. Thomason, Convergence of posets of a fuzzy matrix , Journal of Mathl.Anal. Appl., Vol 57 (1977), PP 3-15.
[3] Jian Miao Chen (1982), Fuzzy matrix partial orderings and generalized inverses, Fuzzy sets sys $105: 453-458$.
[4] Kim J.B., Idempotents and inverses in Fuzzy matrices , Malaysian Math 6(2), 1983, 57 61.
[5] George J. Klir and Bo yuan,Fuzzy sets and Fuzzy logic , PHI, 2013
[6] Meenakshi.A.R., Fuzzy matrix - Theory and its applications , MJP Publishers (2008)
[7] Mitra S.K(1986)"The minus partial ordering and shortest matrix" J.Lin.Alg.Appl.83:1-27
[8] G.Punithavalli., The Partial Orderings of m-Symmetric Fuzzy Matrices,International journal of Mathematics Trends and Technology, vol 66 issue 4-Aprial 2020.
[9] G. Punithavalli and M.Anandhkumar" Partial Orderings On K-Idempotent Intuitionistic Fuzzy Matrices" ISSN: 2096-3246 Volume 54, Issue 02, November, 2022.
[10]S. Sriram and P. Murugadas" The Moore-Penrose Inverse of Intuitionistic Fuzzy Matrices" Int. Journal of Math. Analysis, Vol. 4, 2010, no. 36, 1779 - 1786.

