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1. INTRODUCTION : Let the IFM A of order m rows and n columns is in the form of

A=[y;,<ay,,a,, >] ,where a;, and a,, are called the degree of membership and also the
non-membership of y, in A, it preserving the condition 0<a,, +a;, <1 .In intuitionistic

fuzzy matrices, partial ordering is significant. The idea of fuzzy matrix was first presented by
Thomosan [2] in 1977 and it has further developments by various researchers. Jian Miao Chen
pioneered the partial orderings on fuzzy matrices, which are comparable to the star ordering on
complex matrices [3].After that, a lot of works have been done using this notion. A.R.
Meenachi [1] characterizes the minus ordering on matrices in terms of their generalized
inverses. Another novelty is the way she defines space ordering [6] on fuzzy matrices as a
partial order on the set of all idempotent matrices in Fy. Partial ordering is a reflexive, anti-
symmetric, transitive crisp binary relation R(X, X) [5]. The properties of this class of relations
are denoted by the common symbol <. Therefore, <x ,y> represents <x,y> € R and indicates
that x comes before y. The symbol > [9] denotes the inverse partial ordering R™! (X, X). We
say that y succeeds x if y < x implying that <x,y> € R™!. The symbols <" , <? and <® are used
to denote the various partial orderings P, Q, and R, respectively. In this Section I , As an
analogue to the star ordering on complex matrices, we start with the T inverse or reverse
ordering on IFM. We explore different ordering on the IFM using a variety of generalized
inverses, including g-inverse, group inverse, and Moore-penrose inverses, and we analyses how
these ordering relate to T ordering[8]. We derive some equivalent conditions for each ordering
by using generalized inverses[10]. Additionally, we demonstrate that these orderings are the
same for a particular class of IFM. In section II we study the minus ordering for I[FM as an
analogue of minus ordering for complex matrix studied in [7] and as a generalization of T-
ordering for IFM introduced . We show that the minus ordering is only a partial ordering in the
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set of all regular fuzzy matrices. Finally, we characterize the minus ordering on matrix in terms
of their generalized inverses.

2. INVERSE OR REVERSE T-ORDERING ON INTUITIONISTIC FUZZY
MATRICES

Definition:2.1 For A4, B belongs to (IF )mxn the T-ordering P <" Q is well-defined as P <" Q
& P'P =P'Q and PP' = QP'.

T
Definition:2.2 For 4, B belongs to (IF )mxn the T— Reverse (or) inverse ordering P>Q is

T
defined as P>Q & Q'Q = Q'P and QQ' = PQ".
<1,0> <0,1>} _[<l,0> <1,0>}

: ider, P= ’
Example:2.1 Let us consider, L L0> <1,0>

- <L,0> <1,0>|

Theorem 2.1. Let P,Q€ (IF )mxn and Q" exists. Then the given conditions are equivalent.

i) P=Q
(i) Q' Q=QPandQQ" =PQ"
(iii) QQ'P=Q=PQ'Q

Proof: (i) = (ii) ,By (i) We have P>Q & Q'Q=Q'Pand QQ'=PQ"
Then Q'Q=Q'QQQ=Q(QH'Q'Q=Q(Q)QP=QQQP=Q'P
Similarly, QQ'=PQ"
(i) = (iii) Q°Q = QP implies Q = QQQ = QQ'P and QQ* = PQ"
implies Q = QQ'Q =PQ'Q
(iii)= (i) By Q =QQ'P, (QQ")'Q = (QQ")'P
Then, Q'(Q)' Q'Q=Q'(Q")' Q'P. Hence Q'Q=Q'P
Similarly, QQ'=PQ' by Q =PQ'Q
Theorem 2.2 Let P,Qe(IF )mxn If P* and Q" both exists. Then the given conditions are

equivalent.

@ P20

(i) QQ=P'QandQQ" = QP
(i) P*QQ* = Q" —Q"QP*

(iv) QQP'=Q=PQQ

Proof: (i) = (iv) Q'Q = Q'P implies Q'Q = Q' PP*P
Then Q'Q = (Q'Q)' =(P"P)'(Q"P)' =P"PQ'Q

Hence, Q'QQ" = P'PQ'QQ" and Q'(QQ")' = P'PQ' (QQ")'
Therefore, Q' = P'PQ' = P"'QQ"

Similarly, Q' = Q'QP" by QQ'=PQ'

(iv) = (ii) By Q' = P'QQ', Q' (Q")' = P"QQ(Q")'

Then, Q'Q=P'QQ'Q=P'Q
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Similarly, QQ* = QP" and Q' = Q'QP*

(i) = () Q'Q=(Q'Q)'=(P'Q)'= (P'PP'Q)'= (P'Q)'(P'P)'= (Q'Q'P'P=Q'QP'P=Q'QQ"P
—O'P

Siﬁilarly, we have QQ" = PQ" .Thus (i) holds by Theorem 2.1 (ii)

(i) = (i) ByQ'Q=P'Q,Q"=Q'QQ"=P'QQ"

Similarly , QQ"= QP" implies Q"= Q"QP"

(iii) = (i) P'QQ" = Q" =Q"QP" implies Q"Q =P'QQ'Q=P'Q and QQ" = QQ"QP"=QP"
Theorem 2.3 In (IF)" . the set of all IFM P& (IF) for which P* exists > s a partial

m

ordering.
T T T
Proof: R>R obvious. If R20Q, O2R then R = QR'R, P=PP'R by theorem 2.1 (iii). Thus, by
Theorem 2.2(ii) P=PP"Q=PQ'Q=Q
T T
If R=20 O2P then R=QR'R and Q=PQ"Q by Theorem 2.1 (iii) and Theorem 2.2(ii) , we
have R=QR'R= PQ"QR'R=PQ'R= PR'R

T
Similarly, we have R=RR*P . Thus , R P by Theorem 2.1 (iii)
<1,0> <0,1> 3 <L0> <1,0>
<1,0> <1,0>|"

Example:2.2 Let O = { } For Q, 00'0 # 0. Therefore

<L0> <1,0>

T T T
Q" does not exists. Here =P and P>Qbut, O # P. Thus > is not a partial ordering in

(IF)”D(” :

T
Theorem 2.4 If P>(Q then we have
(i) P'Q=Q'P and QP =PQ"
(i)  P'Q=Q'P and PQ'=QP" (i.e) P'Q and PQ" are symmetric,
(i) QP'Q=Q=PP'Q=PQP"=P'QP,PQ'Q=Q=QQP=QPQ"=Q'PQ
) PQ'Q=QQP=QPQ=QPQ, QP'P = PP'Q = P'QP = PQQ'
T
Theorem 2.5 If P=0 then we have
T
i  P=0
T
() P20
11 r 12 12 r t

ity P O2PP,OP 200

T T
(iv) P Q>P"P,QP">PP"

T T
v) P'P>0'Q,PP' >Q0'

T T
(viy P'P=Q°Q,PP">200"
(vi))  IfP'P* = P"P' then Q'Q"=Q"Q"
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(viil)  if P*=P' then Q" = Q'
(ix)  if P?=0 then Q* =0
(X)  if P=P? then Q=Q>
(xi)  if P=PPT then Q = QQ"
(xii) if P=PT=P? and Q=Q'then Q = Q*?
Proof: (i) and (ii) hold clearly.
iii. (P'Q) P'Q=0'PP'0=0'00'0=0'00'P=0'QP'P=Q'PP'P
Similarly, P'Q(Q'Q) = P'P(P'Q) . Thus P'Q PP,
Similarly, we have, OP' > pp'
iv. (PQ) P'O=(0'0) 0'0=0'(0") 0'0=0'(0") 0'P=0'(Q") P'P=(Q"Q) PP
=(P*Q) PP and P*Q(P"Q) =P"P(P*Q) . Thus P O>PP
Similarly we have QP* éPP+
v. P'P20'0, PP'>00"
(0'0) 0'0=0'00'P=0'0P'P=(0'0) P'P and 0'0(Q'Q) =P'P(Q'0)
P'P20'0
Similarly, PP’ QQQt
vi. P'P20°0,PP* 200"
(o) PrP=0(0") PP=0'(0") 0'P=0'(0") 0°0=(0"0) 0'Q
and P'P(0°Q) = 0'0(0°Q) (QQ=Q'P and QQ' = PQ)
vii. IfP'P* = P'P' then Q'Q"=Q'Q"
Q'Q"=Q'QP'P'QQ" =Q'QP'P'QQ" =Q'Q'
viii. if P* = P' then Q" = Q'
Q" =Q"QQ=P"QQ'=P"QP"=P'QP'=P'QQ' = Q'
ix.if P>=0 then Q* =0
Q>=QP'PPP'Q =QP'P> P'Q =0
x.if P =P?then Q = Q*
Q*=QP'PPP'Q=QPPP'Q=QP'"Q=QQ'Q=Q
xi.if P = PP' then Q = QQ'
By P = PP, we have P'=P and P*=P

Then QQ' = PQ' = PP'Q = PPQ!= PQQ' = P'QQ'= Q' = Q
xii.Q%= QQ'Q = PQ'QQ'P = PP'QQ'P = PP'PQ'P = PQ*P = PP'Q = Q
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3.INVERSE OR REVERSE MINUS ORDERING ON IFM

Definition:3.1 For P E(IF )_m and Q€ (IF) the inverse or Reverse minus ordering as >
is definedas P>Q < Q0 Q=0 PandQQ =PQ" forsome O~ € O{l}

To specify the minus ordering with respect to particular g-inverse of P, let us write £ = @ with
respectto X < XOQ = XP and QX = PX for X € Q{l}.

Remark :3.1 For O E(F )7m, ,and Pe(IF )mxn if Q" exists, then Q" is unique and Q"= Q' we

have, P£ 0 < P> Qwith respect to Q" < Q'Q0=0'P and QQ' = PQ' ,which is precisely
Definition 2.1 of T-ordering. Thus T-ordering is a special case of minus ordering. However the
converse P>(Q0 = P;Q need not be true.

<,0> <L,0> <LL0> <1,0>

<0,0> <0,0 J’ :L 0,0> <0,0 >] Since Q' is a
g-inverse of Q, Q" exist and Q" = Q" also Q is idempotent , Q itself is a g-inverse of Q, Q =
QP=PQ implies P20 with respect to Q.

Example:3.1 Let us consider, P :{

Q'O+ Q'P and QQ' # PQ' .Hence P > Q notimplies PéQ.

Theorem:3.1 For Qe(IF)_m and Pe (]F )mxn the given conditions are equivalent
(1) P>Q
(i)  Q9=Q0 P=PQ Q=PQ P

Proof: (i) = (ii)

P>20< 0 Q0=0 PandQQ =PQ" forsome Q € Q{l}

Now, 0=0(Q°Q)=00 P

0=(007)0=P00Q

0=P(QQ)=PQOP

(ii) = (@)

Let X =0 00

0X0=0(0 00)0=(00 0)0 0=0= X €01}

Now, XQ =(Q"Q0)QQ P

=0 (QO OV P
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-(000 )P
= XP
Similarly, QX=PX
Hence P> Q with respectto X € Q{l}
Remark :3.2 In general, in the definition of minus ordering P> (P need not be regular. This

is illustrated in the following example.

Example:3.2 Let us consider
<LL0> <L,0> <0,0> <LL0> <L0> <1,0>

P=/<0,0> <1,0> <1,0>|,0=|<1,0> <1,0> <1,0>
<0,0> <0,0> <1L0> <1,0> <1,0> <IL,0>

Since Q is idempotent ,Q is regular and Q itself is a g- inverse of Q. Here Q= QP = PQ. Hence
P20 which implies 0=0 € Q{l}. If P is not regular ,since there is no X € F; such that
PXP =P

Theorem:3.2 Let P,O€(/F) . If P>Q.then P{l}c O{l}

Proof: P>Q0 = Q0=00 P=PQO Q
For, P~ € P{l}
QP 0 =(Q0 P)P (PO Q)
QP Q=00 (PP P)O Q
=(Q0 P)O Q=00 0=0

Hence,QP Q=0 for each P~ eP{l}
Therefore, P{l} c Q{l}
Theorem:3.3 If P> Qand Q is idempotent then Q is a g-inverse of P.
Proof. Let P itself is a g-inverse of P then P is regular, P is idempotent . Here P €P{1}. Then
by above property P{1} € Q{1}. Hence P is a g-inverse of Q.
Example.3.3 Let us Consider
P:[<1,O> <1,0>} :[ <1,0> <1,0>}

<L,0> <01>[% |<0505> <01>
P is not idempotent.

{ [<1,0> <,B,O>} }
Ol =1 X:X= ,05< f<l,and 0<a<1

<,0> <a,0>
Here, P> Q for
Q{<0,1> <0.5,0>} e PeQll
<1,0> <L0>

Theorem3.3 For P,Q<(/F) then the given conditions are equivalent
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@) P>Q
(i) Q=QP P=PP Q=0QP Q forall P~ € P{l}
(i)  R(Q) <= R(P),C(Q) = C(P) and QP Q=0

Proof: (i) = (ii): Q=PQ P (By theorem 3.1)
=PQ (PP P)
=(PO P)P' P
=0P P (By theorem 3.1)

Therefore, Q =QP P for each P~ € P {1}
Similarly, we have Q = PP~Q for each P~ € P{l}

Also, Q=Q0P Q (By theorem 3.1)
(il) = (iii): Q=QP " P=PP Q=QP Q forall P" € P{l}
Q=QP P forall P~ € P{l}
QO=XPP P, Q=XP
Q=XP < R(Q)c R(P)
Q=PP Q forall P~ e P{l}
Q=PP PY
Q=PY = C(Q)cC(P),
(iii) = (i):Let X = P QP
QX0 =Q(P OP)Q
QXQ=(QOP Q)P O
=QP 0=0=XeQ{l}
Now, QX =Q(P QP")
=PP Q(PQFP")
=PP (QP Q)P
= PP OP
=PX
Similarly, XQ=XP and QP Q=0
Hence P> Q withrespectto X € Q{l}

Theorem3.4 For (IF)  the minus ordering > is a partial ordering.

Proof: (i) R>R is obvious .Hence > is reflexive.
ii.R2Q0=>R=0RQ

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

1226



Journal of Northeastern University
Volume 25 Issue 04, 2022

Q2R=0=00 R=RQQ
R=QRQ
=(Q0 R)R (RO Q)
=00 (RR R)O 0O
=00 (RO Q)
=000
=0
Thus, R>Qand Q>R = R=0Q .Hence 2 is antisymmentric.
.R>2Q=>R=RQO Aand R=RQO Q=00 R
02P=0=00P=PQQ
Let X =Q RO .Then RXR=R(Q RO )R=(RQ R)YQO R=RQO R=R
Since,R>Q and Q> P Applying Theorem 3.2 repeatedly ,we have
RX =R(Q RO")
=00 R(Q RQ")
=00 (RO R)O
=00 RO
=(PO 0)0 RO
= PO (00 RO
-P(Q'RQ)
=PX
Similarly, XR=XP. Since X € R {1} with RX = PX and XR=XP it follows that, R > P.

Theorem 3.5 For PE(IF)_W and Qe (]F ) . the given conditions are equivalent

(1) P>Q< P >0
(i1) P>Q < RPS > RQS for some invertible matrices R and S

Proof: P>Q0 < QQ =PQ and Q Q=0 P
= (00 ) =(ro")
e(0)o=(o)
“)o-()
00 =rQ = (2) 0'=(¢')
Similarly,0°0=0 P 0'(0') =P'(Q')
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Hence, P>Q < P' > ('
(i) P> Q < RPS > ROS for some invertible matrices R and S
P>0< 00 =PO and Q° Q=0 P
Since P is regular which implies RPS is also regular and S P"R" a g-inverse of RPS
RQS) (RQS)=(S'Q'R")SOR
ROS) (ROS)=S'O"(R'R)OS
ROS) (RQ)=S'(0"0)S
PDQ) (PDQ)=S'(Q"'P)S
PDQ) (PDQ)=(S'Q"'R')(RPS)
PDQ) (PDQ)=(RQOS) (RPS)
Similarly,(ROS)(ROS) =(RPS)(RQS)”
Hence, P> Q = (RPS) > (RQS)
Conversly, (RPS) > (R0OS) = R'(RPS)S' > R' (ROS) S’
=>P=>Q

Corollary:3.1 For P,Qe(lFfm , P>Q with respectto P < P" > Q" with respect to C.
Theorem 3.6 For P(IF) and Qe(IF) with P>Q

(i)  If P=P* then Q=0’

(i) If P> =0,thenQ* =0

Proof: O’ =00
=(00 P)(PO0)
=00 P00
=(Q0 P)Q 0
=00 0=0
0’ =00=(00 P)(PQQ)=00 P’00=0
Remark:3.3 In the above Theorem 3.1 if P>(Q with Q idempotent then P need not be

<0,0> <1,0>} _[<1,0> <1,0>

idempotent .Consider P = ,
<L,0> <0,0>

= P> ith
<1,0> <1,0>} - Here Q wi

respect to O~ = Q .But P is not idempotent.

T
Theorem 3.7 For P,Qe(IF) | , P>Q«< P20 and PQ'P=0

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

1228



Journal of Northeastern University
Volume 25 Issue 04, 2022

Proof: P£ Q and by remark (3.1) it follows that P>Q and QQ"'B=0 = Q=PQ'P
Conversely: if P>Q by Theorem 3.3 Q=QP Q forall P~ e P{l} .Since Pe(lF)+m
P* exist and P'=P" is a g-inverse of P, hence Q=QP"Q=QP'Q

Now, QQ'=Q(PQ"P)'

Q' =QP'OF'

=(or'o)P

Q' =0P

Thus,QQ' = OP' = QQ' = PQ' (Taking transpose on both sides)
Similarly, we have Q'Q=0Q'P

Hence, P£ 0

Theorem 3.8 For P,Q<(/F) the following conditions are equivalent

i. P>Qwithrespectto QF (Pé Qj

ii. Pe 0" {1,3,4}

iii. P e0{1,3,4}

Proof: (i) = (if) P> Qwith respect to Q" = Q" Q=0"P and Q0" = PQ’

Now,Q" =Q°00" =Q"PQ" = Pe 0" {1}

(Q'P) =(0°0) =0°0=0"P= PcQ" {3}

(PO") =(00") =00" =PQ" = Pe Q" {4}

(ii) = (iii) Since Q" =Q' and P* = P',We have, P Q" {1,3,4} = P" € 0{1,3,4}
(iii) = () P € 0{1,3,4)= OP'0 =0, (OP) =QP" = PQ" and (P'Q) =P'Q=0'P
0'0=0'0(P'0)=(0°00")P=0"P

00" =(0P'Q)0" =(QP")QQ" = PQ'0Q" = PQ*

Hence P> Q withrespectto O

Theorem 3.9 For LO.Re(IF)’ ,ReP{2) and Q>R thenQ e P{2}.
Proof:
O=2R=RRQ=0RR=0R Q=0
OPQ =(QR R)P(RR Q)
=QR (RPR)R Q
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=OR (RRQ)
=0R 0

=0

Hence,Q € P{Z}.

Conclusion:

We derive some equivalent conditions for each ordering by using generalized inverses.
Additionally, we demonstrate that these orderings are the same for a particular class of IFM.
we study the minus ordering for IFM as an analogue of minus ordering for complex matrix
studied and as a generalization of T- ordering for IFM introduced . We show that the minus
ordering is only a partial ordering in the set of all regular fuzzy matrices. Finally, we
characterize the minus ordering on matrix in terms of their generalized inverses.
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