HERONIAN MEAN LABELING OF SOME NEW GRAPHS

J. Periyaswamy
PG and Research Department of Mathematics, A.V.C College (Autonomous), annampandal609305, Mayiladuthurai, Tamil Nadu, India, Affiliated to Annamalai University Mail Id: jperiaswamy@gmail.com

Abstract

A graph $G=(V, E)$ with p vertices and q edges is said to be a heronian mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots, q+1$ in such a way that when each edge $e=u v$ is labeled with $f(e=u v)=$ $\left\lceil\frac{f(u)+\sqrt{f(u) f(v)}+f(v)}{3}\right\rceil$ or $\left\lfloor\frac{f(u)+\sqrt{f(u) f(v)}+f(v)}{3}\right]$ then the edge labels are distinct. In this case, f is called heronian mean labeling of G. In this paper, we proved we prove that some new graphs such as Path union of two cycles C_{r}, k - Path union of two cycles C_{r}, Path union of two crowns C_{r}^{*} and k - Path union of two crowns C_{r}^{*} all are heronian mean graphs.

Keywords: Graph, Heronian mean graph, Path, Cycle, Crown.
Mathematics subject classification: 05C78.

I. INTRODUCTION

By a graph, we mean finite undirected graphs without loops or multiple edges. The vertex set is denoted by $V(G)$ and the edge set is denoted by $E(G)$. The cycle of length r is denoted by C_{r}, the crown of length r is denoted by C_{r}^{*} and the path of length k is denoted by P_{k}. For all other standard terminology and notations, we follow Harary [2]. A detailed survey of graph labeling, we refer to Gallain [1]. The concept of mean labeling has been introduced by S. Somasundaram .et.al [4]. Meena. S and Mani. R [3] investigated Root square mean labeling for some cycle related graphs. Harmonic mean labeling of graph introduced by S. Somasundaram and S.S. Sandhya in [5,6]. The Heronian mean labeling of graphs was introudced by S.S. Sandhya. et.al [7,8,9]. In this paper, we investigate the heronian mean labeling of some new graphs. The following definitions are useful for the present investigation.

Definition 1.1:

A graph $G=(V, E)$ with p vertices and q edges is said to be a heronian mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots, q+1$ in such a way that when each edge $e=u v$ is labeled with $f(e=u v)=$ $\left\lceil\frac{f(u)+\sqrt{f(u) f(v)}+f(v)}{3}\right\rceil$ or $\left\lfloor\frac{f(u)+\sqrt{f(u) f(v)}+f(v)}{3}\right]$ then the edge labels are distinct. In this case, f is called heronian mean labeling of G.

Definition 1.2:

A walk in which $u_{1} u_{2} \ldots u_{r}$ are distinct is called a path. A path on r vertices is denoted by P_{r}.

Definition 1.3:

A closed path is called a cycle. A cycle on r vertices is denoted by C_{r}.

Definition 1.4:

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} \cup G_{2}$ with vertex set $V=V_{1} \cup V_{2}$ and the edge set $=E_{1} \cup E_{2}$.

Definition 1.5:

Let $G_{1}, G_{2}, \ldots, G_{r}, m \geq 2$ be r copies of a fixed graph G. The graph G obtained by adding an edge between G_{i} and G_{i+1} for $i=1,2, \ldots, r-1$ is called a path union of \boldsymbol{G}.

Definition 1.6:

The \boldsymbol{k} - path union of two cycles $\boldsymbol{C}_{\boldsymbol{r}}$ is the graph obtained by joining two vertices from two copies of C_{r} by a path P_{k} of length $k-1$.

II. MAIN RESULTS

In this paper, we investigate the heronian mean labeling of some new graphs.

Theorem: 2.1

Path union of two cycles C_{r} is a heronian mean graphs.

Proof:

Let $c_{1}, c_{2}, \ldots, c_{r}$ and $d_{1}, d_{2}, \ldots, d_{r}$ be the vertices of two cycles C_{r} in G.
Let $V(G)=\left\{c_{1}, c_{2}, \ldots, c_{r}, d_{1}, d_{2}, \ldots, d_{r}\right\}$

$$
\begin{aligned}
E(G)= & \left\{c_{j} c_{j+1} / 1 \leq j \leq r-1\right\} \cup\left\{d_{j} d_{j+1} / 1 \leq j \leq r-1\right\} \\
& \cup\left\{c_{r} c_{1}, d_{r} d_{1}, c_{r} d_{1}\right\} .
\end{aligned}
$$

Which are denoted as Figure 1

Figure 1: heronian mean labeling of path union of two cycles $\boldsymbol{C}_{\boldsymbol{r}}$
Define a function $f: V(G) \rightarrow\{1,2, \ldots, 2 r+1\}$ by

$$
\begin{array}{ll}
f\left(c_{j}\right)=j & \text { for } 1 \leq j \leq r \\
f\left(b_{r}\right)=r+j+1 & \\
\text { for } 1 \leq j \leq r
\end{array}
$$

Then the edge lables are distinct.
Hence f is a heronian mean labeling of G.

Illustraction:

Figure 2: heronian mean labeling of path union of two cycles \boldsymbol{C}_{6}
Theorem: 2.2
k - Path union of two cycles C_{r} is a heronian mean graphs.
Proof:
Let $c_{1}, c_{2}, \ldots, c_{r}$ and $d_{1}, d_{2}, \ldots, d_{r}$ be the vertices of two cycles C_{r} in G.
Let $a_{r}=h_{1}, h_{2}, \ldots, h_{k}=d_{1}$ be the vertices of path P_{k}.
Let $V(G)=\left\{\begin{array}{c}c_{1}, c_{2}, \ldots, c_{r}, d_{1}, d_{2}, \ldots, d_{r}, \\ h_{1}, h_{2}, \ldots, h_{k}\end{array}\right\}$

$$
\begin{aligned}
E(G)= & \left\{c_{j} c_{j+1} / 1 \leq j \leq r-1\right\} \cup\left\{d_{j} d_{j+1} / 1 \leq j \leq r-1\right\} \\
& \cup\left\{h_{j} h_{j+1} / 1 \leq j \leq k-1\right\} \cup\left\{c_{r} c_{1}, d_{r} d_{1}\right\}
\end{aligned}
$$

Which are denoted as Figure 3

Figure 3: heronian mean labeling of \boldsymbol{k} - path union of two cycles $\boldsymbol{C}_{\boldsymbol{r}}$
Define a function $f: V(G) \rightarrow\{1,2, \ldots, 2 r+k-1\}$ by

$$
\begin{aligned}
f\left(c_{j}\right) & =j & & \text { for } 1 \leq j \leq r \\
f\left(h_{j}\right) & =r+j-1 & & \text { for } 2 \leq j \leq k-1 \\
f\left(d_{j}\right) & =r+k+j-1 & & \text { for } 1 \leq j \leq r
\end{aligned}
$$

Then the edge lables are distinct.
Hence f is a heronian mean labeling of G.

Illustraction:

Figure 4: heronian mean labeling of \boldsymbol{k} - path union of two cycles \boldsymbol{C}_{5}

Theorem: 2.3

Path union of two crowns C_{r}^{*} is a heronian mean graphs.

Proof:

Let $c_{1}, c_{2}, \ldots, c_{r}$ and $d_{1}, d_{2}, \ldots, d_{r}$ be the vertices of two cycles C_{r} in G.
Let $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{r}^{\prime}$ be the pendant vertices attached at $c_{1}, c_{2}, \ldots, c_{r}$ respectively and $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{r}^{\prime}$ be the pendant vertices attached at $d_{1}, d_{2}, \ldots, d_{r}$ respectively.

Let $V(G)=\left\{c_{1}, c_{2}, \ldots, c_{r}, d_{1}, d_{2}, \ldots, d_{r}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{r}^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{r}^{\prime}\right\}$

$$
E(G)=\left\{c_{j} c_{j+1} / 1 \leq j \leq r-1\right\} \cup\left\{d_{j} d_{j+1} / 1 \leq j \leq r-1\right\}
$$

$$
\cup\left\{c_{j} c_{j}^{\prime} / 1 \leq j \leq r\right\} \cup\left\{d_{j} d_{j}^{\prime} / 1 \leq j \leq r\right\}
$$

$$
\cup\left\{c_{r} c_{1}, d_{r} d_{1}, c_{r} d_{1}\right\}
$$

Which are denoted as Figure 5

Figure 5: heronian mean labeling of path union of two crowns $\boldsymbol{C}_{\boldsymbol{r}}^{*}$
Define a function $f: V(G) \rightarrow\{1,2, \ldots, 4 r+1\}$ by

$$
\begin{array}{ll}
f\left(c_{j}\right)=2 j & \text { for } 1 \leq j \leq r \\
f\left(c_{j}^{\prime}\right)=2 j-1 & \text { for } 1 \leq j \leq r \\
f\left(d_{j}\right)=2 r+2 j+1 & \text { for } 1 \leq j \leq r \\
f\left(d_{j}^{\prime}\right)=2 r+2 j & \text { for } 1 \leq j \leq r
\end{array}
$$

Then the edge lables are distinct.
Hence f is a heronian mean labeling of G.

Illustraction:

Figure 6: heronian mean labeling of path union of two crowns \boldsymbol{C}_{4}^{*}

Theorem: 2.4

k - Path union of two crowns C_{r}^{*} is a heronian mean graphs.
Proof:
Let $c_{1}, c_{2}, \ldots, c_{r}$ and $d_{1}, d_{2}, \ldots, d_{r}$ be the vertices of two cycles C_{r} in G.
Let $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{r}^{\prime}$ be the pendant vertices attached at $c_{1}, c_{2}, \ldots, c_{r}$ respectively and $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{r}^{\prime}$ be the pendant vertices attached at $d_{1}, d_{2}, \ldots, d_{r}$ respectively.

Let $a_{r}=h_{1}, h_{2}, \ldots, h_{k}=d_{1}$ be the vertices of path P_{k}.
Let $V(G)=\left\{\begin{array}{c}c_{1}, c_{2}, \ldots, c_{r}, d_{1}, d_{2}, \ldots, d_{r}, h_{1}, h_{2}, \ldots, h_{k}, \\ c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{r}^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{r}^{\prime}\end{array}\right\}$

$$
\begin{aligned}
E(G)= & \left\{c_{j} c_{j+1} / 1 \leq j \leq r-1\right\} \cup\left\{d_{j} d_{j+1} / 1 \leq j \leq r-1\right\} \\
& \cup\left\{h_{j} h_{j+1} / 1 \leq j \leq k-1\right\} \cup\left\{c_{j} c_{j}^{\prime} / 1 \leq j \leq r\right\} \\
& \cup\left\{d_{j} d_{j}^{\prime} / 1 \leq j \leq r\right\} \cup\left\{c_{r} c_{1}, d_{r} d_{1}\right\}
\end{aligned}
$$

Which are denoted as Figure 7

Figure 7: heronian mean labeling of \boldsymbol{k}-path union of two crowns $\boldsymbol{C}_{\boldsymbol{r}}^{*}$
Define a function $f: V(G) \rightarrow\{1,2, \ldots, 4 r+k-1\}$ by

$$
\begin{array}{ll}
f\left(c_{j}\right)=2 j & \text { for } 1 \leq j \leq r \\
f\left(c_{j}^{\prime}\right)=2 j-1 & \text { for } 1 \leq j \leq r
\end{array}
$$

$$
\begin{array}{ll}
f\left(h_{j}\right)=2 r+j-1 & \text { for } 2 \leq j \leq k-1 \\
f\left(d_{j}\right)=2 r+k+2 j-1 & \text { for } 1 \leq j \leq r \\
f\left(d_{j}^{\prime}\right)=2 r+k+2 j-2 & \text { for } 1 \leq j \leq r
\end{array}
$$

Then the edge lables are distinct.
Hence f is a heronian mean labeling of G.

Illustraction:

Figure 8: heronian mean labeling of \boldsymbol{k}-path union of two crowns \boldsymbol{C}_{4}^{*}

III. CONCLUSION

The variety of applications for labeled graphs make their study extremely important. All graphs are not heronian mean graphs. It is very interesting to investigate graphs which admit heronian mean labeling. In this paper, we proved that Path union some cycles and crowns graphs are heronian mean graph. The resulting conclusions are presented in sufficient illustrations for easier comprehension. Similar results for a variety of various graphs can be investigated.

REFERENCES

[1] Gallian. J.A, 2010, A dynamic Survey of graph labeling. The electronic Journal of Combinatories 17DS6.
[2] Harary. F, 1988, Graph Theory, Narosa Publishing House Reading, New Delhi.
[3] Meena. S and Mani. R, Root square mean labeling of some cycle Related Graphs., IJSART, Vol. 5, Issue 7, Jul 2019, PP. 786-789.
[4] Somasundaram. S, and Ponraj. R, Mean Labeling of graphs, National Academy of Science letters, 26, 2003, 210-213.
[5] Somasundaram. S, Ponraj. R \& Sandhya. S.S, Harmonic Mean Labeling Of Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing to Communicated.
[6] Sandhya. S.S, Somasundaram. S \& Ponraj. R, 2012, Some Results On Harmonic Mean Graphs, International Journal Contemporary Mathematical Sciences, Vol.7, No.4, PP. 197-208.
[7] Sandhya. S.S, Ebin Raja Merly. E \& Deepa. S.D, 2017, Heronian mean labeling of graphs,

International Mathematical Forum, Vol. 12, No. 15, 705-713.
[8] Sandhya. S.S, Ebin Raja Merly. E \& Deepa. S.D, 2020, Heronian Mean Labeling of Line Graphs, Journal of Information and Computaional Science, Vol. 10, Issue 2, 68-75.
[9] Sandhya. S.S, Ebin Raja Merly. E \& Deepa. S.D, 2016, Subdivision of Heronian Mean Labeling of Graphs, International Journal of Computaional and Applied Mathematics, Vol. 11,

No. 2, 129-137.

