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Abstract. A mininorm on a vector function 𝑋 and field as 𝕂 = ℝ, such that ℂ is a 
function 𝜔 from 𝑋 to ℝ satisfying the properties of a norm || || with the property ‖𝛼𝑥‖ =

|𝛼| ‖𝑥‖, 𝛼 ∈ 𝕂, 𝑥 ∈ 𝑋 replaced by the following property 

‖𝛼𝑥‖ = ‖𝑥‖ ∀ 𝑥 ∈ 𝑋, 𝛼 ∉ 0. 

There are several mininorms on the Euclidean spaces ℝ . One such mininorm is the 
Hamming weight function. In this paper, we discuss certain basic properties of Euclidean 
spaces with the Hamming mininorm and also some structural properties of these spaces. 
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1. Introduction 

In coding theory, the Hamming weight 𝜔 (𝑥), of a code word 𝑥 is defined to be the 
number of non-zero coordinates of 𝑥.  
 𝜔 (𝑥) satisfies the following conditions: 
 (i) 𝜔 (𝑥) ≥ 0 for all code words 𝑥 and 𝜔 (𝑥) = 0 if and only if 𝑥 = 0.       
 (ii) 𝜔 (𝑥 + 𝑦) ≤ 𝜔 (𝑥) + 𝜔 (𝑦) for all code words 𝑥 and 𝑦                              
  Also, 𝜔  satisfies an additional property. 
 𝜔 (𝛼𝑥) = 𝜔 (𝑥) for all 𝑥 ∈  ℝ  and 𝛼 ∈ ℝ, 𝛼 ∉ 0 .                               
 Thus, 𝜔  satisfies the conditions of a norm [2], [3], [4]: 
 but the condition  𝜔 (𝛼𝑥) = |𝛼|𝜔 (𝑥).                                                                  (1) 
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 Instead, it satisfies 
  𝜔 (𝛼𝑥) = 𝜔 (𝑥) for all 𝛼 ∉ 0. 
 We may call such a function a mininorm. 
 
Mininorms on Vector spaces 
1.1 Definition 

 A mininorm or weight function on a vector space 𝑋 over 𝕂 = ℝ or ℂ is a function 𝜔 ∶

𝑋 → ℝ satisfying the following: 
 𝜔(𝑥) ≥ 0 for all 𝑥 ∈ 𝑋 and                     (2) 
 𝜔(𝑥) = 0 if and only if 𝑥 = 0 
 𝜔(𝛼𝑥) = 𝜔(𝑥) for all 𝑥 ∈  𝕂, 𝛼 ∉ 0                             (3) 
 𝜔(𝑥 + 𝑦) ≤ 𝜔(𝑥) + 𝜔(𝑦) for all 𝑥, 𝑦 ∈ 𝑋.      (4) 

Here 𝑋 and mininorm 𝜔 are called a mininormed space and is denoted by (𝑋, 𝜔). If the 
mininorm is 𝜔, then it can be written 𝑋 instead of (𝑋, 𝜔). 

We call 𝜔(𝑥), the mininorm or weight of 𝑥. 

Example 1. Let 𝑋 =  ℝ  over ℝ is a mininormed space with the mininorm 𝜔 = 𝜔 .  

Note: The same definition works for 𝑋 =  ℂ  over ℂ as well.  

We call this mininorm on 𝑋 =  ℝ  or ℂ , the Hamming mininorm, or the standard mininorm 
and denote it by 𝜔 . Thus, 𝜔 (𝑥) = number of non-zero co-ordinates of 𝑥. 
Remark 1. If we define 𝜌 (𝑥, 𝑦)  =  𝜔(𝑥 − 𝑦), for 𝑥, 𝑦 ∈  𝑋, then 𝜌  defines a metric on 𝑋. 
Thus, every metric space is a mininormed. 𝜌  is called the metric induced by 𝜔.  
This 𝜌  satisfies the conditions  
(i) 𝜌 (𝑥 + 𝑧, 𝑦 + 𝑧)  =  𝜌 (𝑥, 𝑦) and  
(ii) 𝜌 (𝛼𝑥, 𝛼𝑦)  =  𝜌 (𝑥, 𝑦),where 𝛼 ≠ 0.  
(i) is obvious:  
 
For (ii), consider  

𝜌 (𝛼𝑥, 𝛼𝑦)  =  𝜔(𝛼𝑥 − 𝛼𝑦) 
                          =  𝜔 (𝛼(𝑥 − 𝑦))  

                  =  𝜔(𝑥 − 𝑦)  
                                                                                  

=  𝜌 (𝑥, 𝑦).                                                          (5)    
Note: We shall denote the metric induced by 𝜔  on ℝ  or ℂ  by 𝜌 . Thus, 𝜌 (𝑥, 𝑦)  = number 
of non-zero coordinates of 𝑥 − 𝑦.  
Definition 2. A mininormed space (𝑋, 𝜔) which is complete with respect to the metric induced 
by 𝜔 is called a mini Banach space. 
For example, (ℝ , 𝜔 ) is a mini Banach space.  
Note: A proof for this fact is given in the latter part. 
Remark 2. Let 𝑥, 𝑦 ∈ 𝑋, where (𝑋, 𝜔) is a mininormed space. Then, 𝜔(𝑥) = 𝜔(𝑥 − 𝑦 + 𝑦)  ≤

 𝜔(𝑥 − 𝑦) + 𝜔(𝑦) 
So, 𝜔(𝑥) − 𝜔(𝑦)  ≤  𝜔(𝑥 − 𝑦).                                                                                                                (6)  
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Interchanging 𝑥 and 𝑦, we get,  
𝜔(𝑦) − 𝜔(𝑥)  ≤  𝜔(𝑦 − 𝑥)  =  𝜔(𝑥 − 𝑦).  
That is, −(𝜔(𝑥) − 𝜔(𝑦)) ≤ 𝜔(𝑥 − 𝑦).                                                                                                     (7)  
From (6) and (7), imply  
|𝜔(𝑥) −  𝜔(𝑦)| ≤  𝜔(𝑥 − 𝑦).                                                                                                                    (8) 
 
 
2. Basic properties of Mininorms 

 
Proposition 1. Every mininorm 𝜔 is a continuous function. 
 
Proof: 
Let 𝑥 → 𝑥 in 𝑋. That is, 𝜔(𝑥 − 𝑥) → 0.                                                                             (9) 
Now, |𝜔(𝑥 ) − 𝜔(𝑥)| ≤ 𝜔(𝑥 − 𝑥) → 0. From (8) and (9) 
So, 𝜔(𝑥 ) → 𝜔(𝑥) and 𝜔 is continuous. 
 
Remark 3. Let (𝑋, 𝜔) be a mininormed space, 𝜔(𝛼𝑥) ≤ 𝜔(𝑥)∀𝑥 ∈ 𝑋, 𝛼 ∈ 𝐾. 
 
Proof:  
If 𝛼 ≠ 0, then 𝜔(𝛼𝑥) = 𝜔(𝑥)  
If 𝛼 = 0, then, 𝜔(𝛼𝑥) = 𝜔(0) = 0 ≤ 𝜔(𝑥). 
 
Theorem 1. Let 𝑋 be a finite – dimensional Space, and every mininorm on 𝑋 is bounded 
function. 
 
Proof:  
Let 𝜔 be a mininorm on 𝑋. 
Suppose dim(𝑋) = 𝑛. Let {𝑥 , 𝑥 , … , 𝑥 } be the basis of 𝑋. 
Take 𝑥 ∈ 𝑋. Then, there exist 𝛼 , 𝛼 , … , 𝛼 ∈ 𝐾 such that 
𝑥 = 𝛼 𝑥 + 𝛼 𝑥 + ⋯ + 𝛼 𝑥 .                                                                                                 
(10) 
Now 𝜔(𝑥) ≤ 𝜔(𝛼 𝑥 ) + 𝜔(𝛼 𝑥 ) + ⋯ + 𝜔(𝛼 𝑥 ) 
                  ≤ 𝜔(𝑥 ) + 𝜔(𝑥 ) + ⋯ + 𝜔(𝑥 ), using (Remark 3) 
Thus, 𝜔(𝑥) ≤ 𝛼, were, 
𝛼 = 𝜔(𝑥 ) + 𝜔(𝑥 ) + ⋯ + 𝜔(𝑥 ). 
 
Proposition 2. Let (𝑋, 𝜔) be a mininormed space over 𝐾. Suppose (𝑥 ) and (𝑦 ) are finite 
sequences in 𝑋, such that 𝑥 → 𝑥 and 𝑦 → 𝑦 in 𝑋. Then, 

(i). 𝑥 + 𝑦 → 𝑥 + 𝑦 and  
(ii). 𝛼𝑥 → 𝛼𝑥, 𝛼 ∈ 𝐾 
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Proof:  

𝑑(𝑥 + 𝑦 , 𝑥 + 𝑦) = 𝜔 (𝑥 + 𝑦 ) − (𝑥 + 𝑦) ≤ 𝜔(𝑥 − 𝑥) + 𝜔(𝑦 − 𝑦).This proves (i). 

Proof of (ii) is also easy. 
If 𝛼 = 0, then 𝛼𝑥 = 0 for all 𝑛 and 𝛼𝑥 = 0. 

If 𝛼 ≠ 0, then  𝑑(𝛼𝑥 , 𝛼𝑥) = 𝜔(𝛼𝑥 − 𝛼𝑥) = 𝜔 𝛼(𝑥 − 𝑥)  

                                      = 𝜔(𝑥 − 𝑥) → 0. 
 
Proposition 3. Let 𝜔 be a minimorm on 𝑋. 
Let 𝑌 be the subspace of 𝑋. Here, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 and 𝛼 ∈ 𝐾,𝛼 ≠ 0, we have 
𝜔(𝛼𝑥 + 𝑦) ≥ 𝑑𝑖𝑠𝑡(𝑥, 𝑌)  
Here 𝑑𝑖𝑠𝑡(𝑥, 𝑌) is the distance from 𝑥 𝑡𝑜 𝑌 defined by 
𝑑𝑖𝑠𝑡(𝑥, 𝑌) = inf {𝑑(𝑥, 𝑦)/𝑦 ∈ 𝑌}  
            = inf {𝑑(𝑥 − 𝑦)/𝑦 ∈ 𝑌} 
 
Proof:  
Let 𝜔(𝛼𝑥 + 𝑦) = 𝜔(𝛼(𝑥 + 𝑦)/𝛼)) = 𝜔(𝑥 + 𝑦/𝛼) 

                                      ≥ inf {𝜔(𝑥 − 𝑦)/𝑦 ∈ 𝑌}, since 𝑦/𝛼 ∈ 𝑌 

                                      = 𝑑𝑖𝑠𝑡(𝑥, 𝑌). 

 

Remark 4. Let 𝑥 ∈ 𝑋 and 𝑌 be the subspace of 𝑋, and 𝑑𝑖𝑠𝑡(𝛼𝑥, 𝑌) =

𝑑𝑖𝑠𝑡(𝑥, 𝑌), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛼 ≠ 0. 
 
Proof:  
Let 𝑑𝑖𝑠𝑡(𝛼𝑥, 𝑌) = inf {𝜔(𝛼𝑥 − 𝑦)/𝑦 ∈ 𝑌} 
                           = inf {𝜔(𝛼(𝑥 − 𝑦/𝛼))/𝑦 ∈ 𝑌} 
                           = inf {𝜔(𝑥 − 𝑦/𝛼)/𝑦 ∈ 𝑌} 
                           = inf {𝜔(𝑥 − 𝑦)/𝑦 ∈ 𝑌}, since 𝑌 is a subspace 
                           = 𝑑𝑖𝑠𝑡(𝑥, 𝑌). 
 
3. Structural Properties of Mininormed Euclidean spaces 
 
Theorem 2. Every Euclidean space with the standard mininorm 𝜔  is complete. 
Proof. Consider any Euclide an space ℝ  with the standar d mininorm. 

Let (𝑥 ) = (𝑥 (1), 𝑥 (2), ⋯ , 𝑥 (𝑘)) be a cauchy sequence in[3,4] ℝ . 
Then, for every 𝜖 > 0, it is a positive integer 𝑛 , such that 𝜔 (𝑥 − 𝑥 ) < 𝜖 for all𝑛, 𝑚 ≥

𝑛 [4]. 
By choosing 𝜖 = 1, we get 𝑛  satisfying 𝜔 (𝑥 − 𝑥 ) < 1 for all 𝑛, 𝑚 ≥ 𝑛 . 
So, 𝜔 (𝑥 − 𝑥 ) = 0 for all 𝑛, 𝑚 ≥ 𝑛 , as w  is the standard minimum. 
Hence 𝑥 = 𝑥  for all 𝑛, 𝑚 ≥ 𝑛 . 
This implies that (𝑥 ) is a constant sequence except for a finite number of terms. 
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In fact, (𝑥 ) = 𝑥 , 𝑥 , ⋯ , 𝑥 , 𝑥 , 𝑥 , ⋯  

Thus (𝑥 ) is convergent to 𝑥 . So ℝ  is complete. 

Let us denote the Euclidean space ℝ  with standard mininorm 𝑤  by ℝ . 
 

Theorem 3. Every subset 𝐸 of ℝ  is open. 
Proof. For 𝑥 ∈ 𝐸, con sider 

𝐵(𝑥, 1)  = 𝑦 ∈ ℝ /𝑑 (𝑥, 𝑦) < 1

 = 𝑦 ∈ ℝ /𝑑 (𝑥, 𝑦) = 0 , as there is no 𝑑  value between 0 and 1.

 = {𝑥} ⊂ 𝐸.

 

Thus, every point of 𝐸 is an interior point and hence 𝐸 is open. 

Corollary 1. Every subset of ℝ  is closed. 

Proof. For any subset 𝐸 of ℝ , 𝐸  is open, by the above theorem. Hence 𝐸 is closed. 

 

Remark 5. Every subset of ℝ  is both open and closed. 

 

Theorem 4. ℝ  is not connected. 

 

Proof. Let 𝐸 be any non-empty Proper subset of ℝ . 

Then, both 𝐸 and 𝐸  are open. 

Now, ℝ  is the union of the disjoint open sets 𝐸 and 𝐸 . 

So, ℝ  cannot be connected. 

 

Theorem 5. Only finite subsets of ℝ  are compact, Thus ℝ  is a mini Banach Space. 

Proof. Let 𝐸 be a compact subset of ℝ . 

By Theorem 3 , every singleton set is open. 

So, 𝑆 = {{𝑥}/𝑥 ∈ 𝐸} is an open covering for 𝐸. 

Since 𝐸 is compact, 𝑆 has a finite sub covering for 𝐸, say, {𝑥 }, {𝑥 }, ⋯ , {𝑥 } , as 𝐸 is 

compact[4]. 
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Hence 𝐸 ⊂ {𝑥 , 𝑥 , ⋯ , 𝑥 } and so 𝐸 is a finite set. 

In a normed space (𝑋, ∥∥), a closed ball of redius 𝑟 is defined as 

𝐵 = {𝑥 ∈ 𝑋/∥ 𝑥 ∥≤ 𝑟}. 

It is a fact that Balls are convex sets in normed spaces[3]. 

(A set 𝐴 is convex if 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐴 for all 𝑥, 𝑦 ∈ 𝐴 and 0 ≤ 𝛼 ≤ 1.) 

But this result does not hold in ℝ . 

For an example, consider ℝ . 

Take the ball 𝐵 = 𝑥 ∈
ℝ

( )
≤ 1  

Now 𝑥 = (1,0,0) an d𝑦 = (0,2,0) ∈ 𝐵 . 

Let 𝛼 = . Then, 𝛼𝑥 + (1 − 𝛼)𝑦 = 𝑥 + 𝑦 = , 1,0 . 

So, 𝜔 (𝛼𝑥 + (1 − 𝛼)𝑦) = 2. 

So, 𝛼𝑥 + (1 − 𝛼)𝑦 ∉ 𝐵 . 

Thus 𝐵  is not convex. 
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