PRODUCT CORDIAL LABELING OF DOUBLE WHEEL RELATED GRAPHS

${ }^{1}$ S. Meena and ${ }^{2}$ S. Usharani*
${ }^{1}$ Associate Professor, PG \& Research Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu, India. E-mail: meenasaravanan14@gmail.com
${ }^{2 *}$ Research Scholar, PG \& Research Department of Mathematics, Government Arts College, Chidambaram, Tamil Nadu, India. E-mail: usharanisrm@gmail.com

ABSTRACT

A graph G is said to be a product cordial graph if there exists a mapping g from $V(G)$ to $\{0,1\}$ such that if each line $r t$ is given the label $g(r) \cdot g(t)$, then the cardinality of points with value 0 and the cardinality of points with value 1 differ at most by 1 and the cardinality of lines with value 0 and the cardinality of lines with value 1 differ by at most 1 . In this case, g is said to be a product cordial labelling of G. In this article, we find the product cordial labelling of double wheel related graphs and we prove that the graphs such as $D W_{n} \odot \overline{K_{1}}, D W_{n} \odot \overline{K_{2}}, D W_{n} \odot$ $\overline{K_{3}}, D W_{n} \odot K_{2}, D W_{n} @ P_{3}$ all are product cordial graphs.
Keywords and phrases: Cordial labeling, Product cordial labeling, Double wheel graph, Corona product.

1. INTRODUCTION

Simple and finite graphs with p points and q lines consider in this article. For entire survey of graph labeling we refer [2]. Several variations of graph labelling have been developed including prime labeling and product cordial labeling [4,5,6,11]. Many researchers have studied product cordial graphs [7,8,9,10]. In this article, we find the existence of product cordial labeling of double wheel-related graphs such as $D W_{n} \odot \overline{K_{1}}, D W_{n} \odot \overline{K_{2}}, D W_{n} \odot \overline{K_{3}}, D W_{n} \odot$ $K_{2}, D W_{n} @ P_{3}$.

Definition 1.1.

The corona product of two graphs P and Q is define as the graph got by take one copy of P and $|V(P)|$ copies of Q and connecting the $i^{\text {th }}$ vertex of P to all point in the $i^{\text {th }}$ copy of Q .

Definition 1.2.

A double wheel graph $D W_{n}$ of dimension n can be composed of $2 C_{n}+K_{1}$. It consists of 2 cycles of dimension n where points of two cycles are all connecting to a middle point.

Definition 1.3.

$D W_{n} @ P_{3}$ is the graph got by joining P_{3} at every point of the double wheel $D W_{n}$.

2. MAIN RESULTS

The product cordial labeling of double wheel-related graphs were investigated in this paper.

Theorem 2.1.

$D W_{n} \odot \overline{K_{1}}$ is a product cordial graph.
Proof:
Let $G=D W_{n} \odot \overline{K_{1}}$

Let $\left\{s_{0}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}\right\}$ denote the points of the double wheel of G where s_{0} is apex point, $\left\{s_{1} \ldots s_{n}\right\}$ are rim points of the first cycle and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ are rim points the of second cycle.
Let $\left\{s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\}$ and $\left\{t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime}\right\}$ be the pendant points attached at $\left\{s_{0} s_{1} \ldots s_{n}\right\}$ and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ respectively.
Let $V(G)=\left\{s_{0}, s_{0}^{\prime}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime}\right\}$

$$
\begin{aligned}
E(G)= & \left\{s_{0} s_{\ell} / 1 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell+1} / 1 \leq \ell \leq n-1\right\} \\
& \cup\left\{s_{\ell} s_{\ell}^{\prime} / 0 \leq \ell \leq n\right\} \cup\left\{s_{0} t_{\ell} / 1 \leq \ell \leq n\right\} \\
& \cup\left\{t_{\ell} t_{\ell+1} / 1 \leq \ell \leq n-1\right\} \cup\left\{t_{\ell} t_{\ell}^{\prime} / 1 \leq \ell \leq n\right\} \cup\left\{s_{n} s_{1}, t_{n} t_{1}\right\}
\end{aligned}
$$

Give a labeling h from $V(G)$ to $\{0,1\}$ by:

$$
h\left(s_{0}\right)=1 ; h\left(s_{0}^{\prime}\right)=0
$$

$h\left(s_{\ell}\right)=1 \quad$ for $1 \leq \ell \leq n$

$$
h\left(s_{\ell}^{\prime}\right)=1 \quad \text { for } 1 \leq \ell \leq n
$$

$h\left(t_{\ell}\right)=h\left(t_{\ell}^{\prime}\right)=0 \quad$ for $1 \leq \ell \leq n$
Here, $v_{h}(0)=2 n+1$, where $v_{h}(0)$ is number of points with value 0

$$
\begin{aligned}
& v_{h}(1)=2 n+1 \text {, where } v_{h}(1) \text { is number of points with value } 1 \\
& e_{h}(0)=3 n+1 \text {, where } e_{h}(0) \text { is number of lines with value } 0 \\
& e_{h}(1)=3 n \text {, where } e_{h}(1) \text { is number of lines with value } 1
\end{aligned}
$$

Thus the absolute difference of $v_{h}(0)$ and $v_{h}(1)$ is less than or equal to 1 and the absolute difference of $e_{h}(0)$ and $e_{h}(1)$ is less than or equal to 1 .
Hence $D W_{n} \odot \overline{K_{1}}$ is a product cordial graph.

Illustration 2.1.1

Figure 1: Product cordial labeling of $D W_{4} \odot \overline{K_{1}}$

Theorem 2.2.

$D W_{n} \odot \overline{K_{2}}$ is a product cordial graph.

Proof:

$$
\text { Let } G=D W_{n} \odot \overline{K_{2}}
$$

Let $\left\{s_{0}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}\right\}$ denote the points of double wheel of G where s_{0} is apex point, $\left\{s_{1} \ldots s_{n}\right\}$ are rim points of first cycle and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ are rim points of second cycle.
Let $\left\{s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, s_{0}^{\prime \prime}, s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}\right\}$ and $\left\{t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime}, t_{1}^{\prime \prime} t_{2}^{\prime \prime} \ldots t_{n}^{\prime \prime}\right\}$ be the pendant points attached at $\left\{s_{0} s_{1} \ldots s_{n}\right\}$ and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ respectively.

$$
\text { Let } \begin{aligned}
V(G)=\left\{\begin{aligned}
s_{0}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}, s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime}, \\
s_{0}^{\prime \prime}, s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}, t_{1}^{\prime \prime} t_{2}^{\prime \prime} \ldots t_{n}^{\prime \prime}
\end{aligned}\right. \\
\qquad \begin{aligned}
E(G) & =\left\{s_{0} s_{\ell} / 1 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell+1} / 1 \leq \ell \leq n-1\right\} \\
& \cup\left\{s_{\ell} s_{\ell}^{\prime} / 0 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell}^{\prime \prime} / 0 \leq \ell \leq n\right\} \\
& \cup\left\{s_{0} t_{\ell} / 1 \leq \ell \leq n\right\} \cup\left\{t_{\ell} t_{\ell+1} / 1 \leq \ell \leq n-1\right\} \\
& \cup\left\{t_{\ell} t_{\ell}^{\prime} / 1 \leq \ell \leq n\right\} \cup\left\{t_{\ell} t_{\ell}^{\prime \prime} / 1 \leq \ell \leq n\right\} \cup\left\{s_{n} s_{1}, t_{n} t_{1}\right\}
\end{aligned}
\end{aligned}
$$

Give a labeling h from $V(G)$ to $\{0,1\}$ by:

$$
h\left(s_{0}\right)=1 ; h\left(s_{0}^{\prime \prime}\right)=1 ; h\left(s_{0}^{\prime}\right)=0
$$

$h\left(s_{\ell}\right)=1$
for $1 \leq \ell \leq n$

$$
\begin{array}{ll}
h\left(s_{\ell}^{\prime}\right)=1 & \text { for } 1 \leq \ell \leq n \\
h\left(s_{\ell}^{\prime \prime}\right)=1 & \text { for } 1 \leq \ell \leq n
\end{array}
$$

$h\left(t_{\ell}\right)=h\left(t_{\ell}^{\prime}\right)=h\left(t_{\ell}^{\prime \prime}\right)=0 \quad$ for $1 \leq \ell \leq n$
Here, $v_{h}(0)=3 n+1, v_{h}(1)=3 n+2$

$$
e_{h}(0)=4 n+1, e_{h}(1)=4 n+1
$$

Thus the absolute difference of $v_{h}(0)$ and $v_{h}(1)$ is less than or equal to 1 and the absolute difference of $e_{h}(0)$ and $e_{h}(1)$ is less than or equal to 1 .
Hence $D W_{n} \odot \overline{K_{2}}$ is a product cordial graph.

Illustration 2.2.1

Figure 2: Product cordial labeling of $D W_{4} \odot \overline{K_{2}}$

Theorem 2.3.

$D W_{n} \odot \overline{K_{3}}$ is a product cordial graph.

Proof.

Let $G=D W_{n} \odot \overline{K_{3}}$
Let $\left\{s_{0}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}\right\}$ denote the points of double wheel of G where s_{0} is apex point, $\left\{s_{1} \ldots s_{n}\right\}$ are rim points of first cycle and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ are rim points of second cycle.
$\operatorname{Let}\left\{s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, s_{0}^{\prime \prime}, s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}, s_{0}^{\prime \prime \prime}, s_{1}^{\prime \prime \prime}, \ldots, s_{n}^{\prime \prime \prime}\right\}$ and $\left\{\begin{array}{c}t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime}, t_{1}^{\prime \prime} t_{2}^{\prime \prime} \ldots t_{n}^{\prime \prime}, \\ t_{1}^{\prime \prime \prime} t_{2}^{\prime \prime \prime} \ldots t_{n}^{\prime \prime \prime}\end{array}\right\}$ be the pendant points attached at $\left\{s_{0} s_{1} \ldots s_{n}\right\}$ and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ respectively.

$$
\begin{aligned}
& \text { Let } V(G)=\left\{\begin{array}{c}
s_{0}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}, s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime} \\
\left.s_{0}^{\prime \prime}, s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}, t_{1}^{\prime \prime} t_{2}^{\prime \prime} \ldots t_{n}^{\prime \prime}, s_{0}^{\prime \prime \prime}, s_{1}^{\prime \prime \prime}, \ldots, s_{n}^{\prime \prime \prime}, t_{1}^{\prime \prime \prime} t_{2}^{\prime \prime \prime} \ldots t_{n}^{\prime \prime \prime}\right\}
\end{array}\right. \\
& \qquad \begin{aligned}
E(G) & =\left\{s_{0} s_{\ell} / 1 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell+1} / 1 \leq \ell \leq n-1\right\} \\
& \cup\left\{s_{\ell} s_{\ell}^{\prime} / 0 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell}^{\prime \prime} / 0 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell}^{\prime \prime \prime} / 0 \leq \ell \leq n\right\} \\
& \cup\left\{s_{0} t_{\ell} / 1 \leq \ell \leq n\right\} \cup\left\{t_{\ell} t_{\ell+1} / 1 \leq \ell \leq n-1\right\} \cup\left\{t_{\ell} t_{\ell}^{\prime} / 1 \leq \ell \leq n\right\} \\
& \cup\left\{t_{\ell} t_{\ell}^{\prime \prime} / 1 \leq \ell \leq n\right\} \cup\left\{t_{\ell} t_{\ell}^{\prime \prime \prime} / 1 \leq \ell \leq n\right\} \cup\left\{s_{n} s_{1}, t_{n} t_{1}\right\}
\end{aligned}
\end{aligned}
$$

Give a labeling h from $V(G)$ to $\{0,1\}$ by:

$$
h\left(t_{\ell}\right)=h\left(t_{\ell}^{\prime}\right)=h\left(t_{\ell}^{\prime \prime}\right)=h\left(t_{\ell}^{\prime \prime \prime}\right)=0 \quad \text { for } 1 \leq \ell \leq n
$$

Here, $v_{h}(0)=4 n+2, v_{h}(1)=4 n+2, e_{h}(0)=5 n+2, e_{h}(1)=5 n+1$
Thus the absolute difference of $v_{h}(0)$ and $v_{h}(1)$ is less than or equal to 1 and the absolute difference of $e_{h}(0)$ and $e_{h}(1)$ is less than or equal to 1 .

Hence $D W_{n} \odot \overline{K_{3}}$ is a product cordial graph.

Illustration 2.3.1.

$$
\begin{aligned}
& h\left(s_{0}\right)=1 ; h\left(s_{0}^{\prime}\right)=0 ; h\left(s_{0}^{\prime \prime}\right)=0 \\
& h\left(s_{\ell}\right)=h\left(s_{\ell}^{\prime}\right)=h\left(s_{\ell}^{\prime \prime}\right)=1 \quad \text { for } 1 \leq \ell \leq n \\
& h\left(s_{\ell}^{\prime \prime \prime}\right)=1 \quad \text { for } 0 \leq \ell \leq n
\end{aligned}
$$

Figure 3: Product cordial labeling of $D W_{4} \odot \overline{K_{3}}$

Theorem 2.4.

$D W_{n} \odot K_{2}$ is a product cordial graph.

Proof.

Let $G=D W_{n} \odot K_{2}$
Let $\left\{s_{0}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}\right\}$ denote the points of double wheel of G where s_{0} is apex point, $\left\{s_{1} \ldots s_{n}\right\}$ are rim points of first cycle and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ are rim points of second cycle. Let $\left\{s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, s_{0}^{\prime \prime}, s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}\right\}$ and $\left\{t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime}, t_{1}^{\prime \prime} t_{2}^{\prime \prime} \ldots t_{n}^{\prime \prime}\right\}$ be the pendant points attached at $\left\{s_{0} s_{1} \ldots s_{n}\right\}$ and $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ respectively.
Let $V(G)=\left\{\begin{array}{c}s_{0}, s_{1}, \ldots, s_{n}, t_{1}, t_{2}, \ldots, t_{n}, s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}, t_{1}^{\prime} t_{2}^{\prime} \ldots t_{n}^{\prime}, \\ s_{0}^{\prime \prime}, s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}, t_{1}^{\prime \prime} t_{2}^{\prime \prime} \ldots t_{n}^{\prime \prime}\end{array}\right\}$ $E(G)=\left\{s_{0} s_{\ell} / 1 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell+1} / 1 \leq \ell \leq n-1\right\}$
$\cup\left\{s_{\ell} s_{\ell}^{\prime} / 0 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell}^{\prime \prime} / 0 \leq \ell \leq n\right\}$
$\cup\left\{s_{\ell}^{\prime} s_{\ell}^{\prime \prime} / 0 \leq \ell \leq n\right\} \cup\left\{s_{0} t_{\ell} / 1 \leq \ell \leq n\right\}$
$\cup\left\{t_{\ell} t_{\ell+1} / 1 \leq \ell \leq n-1\right\} \cup\left\{t_{\ell} t_{\ell}^{\prime} / 1 \leq \ell \leq n\right\}$
$\cup\left\{t_{\ell} t_{\ell}^{\prime \prime} / 1 \leq \ell \leq n\right\} \cup\left\{t_{\ell}^{\prime} t_{\ell}^{\prime \prime} / 1 \leq \ell \leq n\right\} \cup\left\{s_{n} s_{1}, t_{n} t_{1}\right\}$
Give a labeling h from $V(G)$ to $\{0,1\}$ by:

$$
h\left(s_{0}\right)=1 ; h\left(s_{0}^{\prime \prime}\right)=1 ; h\left(s_{0}^{\prime}\right)=0
$$

$h\left(s_{\ell}\right)=h\left(s_{\ell}^{\prime}\right)=h\left(s_{\ell}^{\prime \prime}\right)=1 \quad$ for $1 \leq \ell \leq n$

$$
h\left(t_{\ell}\right)=h\left(t_{\ell}^{\prime}\right)=h\left(t_{\ell}^{\prime \prime}\right)=0 \quad \text { for } 1 \leq \ell \leq n
$$

Here, $v_{h}(0)=3 n+1, v_{h}(1)=3 n+2$

$$
e_{h}(0)=5 n+2, e_{h}(1)=5 n+1 .
$$

Thus the absolute difference of $v_{h}(0)$ and $v_{h}(1)$ is less than or equal to 1 and the absolute difference of $e_{h}(0)$ and $e_{h}(1)$ is less than or equal to 1 .
Hence $D W_{n} \odot K_{2}$ is a product cordial graph.

Illustration 2.4.1.

Figure 4: Product cordial labeling of $D W_{4} \odot K_{2}$

Theorem 2.5.

$D W_{n} @ P_{3}$ is a product cordial graph.

Proof.

Let $G=D W_{n} @ P_{3}$
Let s_{0} be the apex point of double wheel in G and let $s_{0}, s_{0}^{\prime}, s_{0}^{\prime \prime}$ be the points P_{3} attached at s_{0}.
Let $s_{1}, s_{2}, \ldots, s_{n}$ and $t_{1}, t_{2}, \ldots, t_{n}$ be the points of two cycles of double wheel. Let $s_{\ell}, s_{\ell}^{\prime}, s_{\ell}^{\prime \prime}$ be the points of path P_{3} attached at s_{ℓ} for $1 \leq \ell \leq n$ and let $t_{\ell}, t_{\ell}^{\prime}, t_{\ell}^{\prime \prime}$ be the points of path P_{3} attached at t_{ℓ} for $1 \leq \ell \leq n$.

Let $V(G)=\left\{s_{0}, s_{0}^{\prime}, s_{0}^{\prime \prime}\right\} \cup\left\{s_{\ell}, s_{\ell}^{\prime}, s_{\ell}^{\prime \prime}, t_{\ell}, t_{\ell}^{\prime}, t_{\ell}^{\prime \prime} / 1 \leq \ell \leq n\right\}$

$$
E(G)=\left\{s_{0} s_{0}^{\prime}, s_{0}^{\prime} s_{0}^{\prime \prime}\right\} \cup\left\{s_{0} s_{\ell}, s_{0} t_{\ell} / 1 \leq \ell \leq n\right\} \cup\left\{s_{\ell} s_{\ell}^{\prime} / 1 \leq \ell \leq n\right\}
$$

$$
\cup\left\{s_{\ell}^{\prime} s_{\ell}^{\prime \prime} / 1 \leq \ell \leq n\right\} \cup\left\{t_{\ell} t_{\ell}^{\prime} / 1 \leq \ell \leq n\right\} \cup\left\{t_{\ell}^{\prime} t_{\ell}^{\prime \prime} / 1 \leq \ell \leq n\right\} \cup
$$

$\left\{s_{n} s_{1}, t_{n} t_{1}\right\}$
Give a labeling h from $V(G)$ to $\{0,1\}$ by:

$$
\begin{aligned}
& h\left(s_{0}\right)=h\left(s_{0}^{\prime}\right)=1 ; h\left(s_{0}{ }^{\prime \prime}\right)=0 \\
& h\left(s_{\ell}^{\prime}\right)=h\left(s_{\ell}^{\prime \prime}\right)=h\left(s_{\ell}^{\prime \prime \prime}\right)=1 \text { for } 1 \leq \ell \leq n \\
& h\left(t_{\ell}^{\prime}\right)=h\left(t_{\ell}^{\prime \prime}\right)=h\left(t_{\ell}^{\prime \prime \prime}\right)=0 \text { for } 1 \leq \ell \leq n
\end{aligned}
$$

Here, $v_{h}(0)=3 n+1, v_{h}(1)=3 n+2$,

$$
e_{h}(0)=4 n+1, e_{h}(1)=4 n+1 .
$$

Thus the absolute difference of $v_{h}(0)$ and $v_{h}(1)$ is less than or equal to 1 and the absolute difference of $e_{h}(0)$ and $e_{h}(1)$ is less than or equal to 1 .

Hence $D W_{n} @ P_{3}$ is a product cordial graph.

Illustration 2.5.1

Figure 5: Product cordial labeling of $D W_{4} @ P_{3}$

3. CONCLUSION

The product cordial labeling of various classes of graphs such as $D W_{n} \odot \overline{K_{1}}, D W_{n} \odot$ $\overline{K_{2}}, D W_{n} \odot \overline{K_{3}}, D W_{n} \odot K_{2}, D W_{n} @ P_{3}$ were investigated. To derive analogous results for some other graph families and other graph labelings in an open research problems.

REFERENCES

[1]. Bondy, J.A. and Murthy V.S.R, "Graph theory and its application", North - Holland, New York 1976.
[2]. Gallian J.A,"A dynamic survey of graph labelling", The Electronic Journal of Combinatorics, 2010.
[3]. Jeya Daisy. K, Santrin Sabitha. R, Jeyanthi. P and Maged Z. Yousef, "k - Product cordial labeling of cone graphs", International Journal Mathematical Combinatorics, Vol. 2 (2022), 72 - 80.
[4]. Meena. S and Kavitha. P, "Some new results on prime graphs", International Journal of Mathematics and Computer Science, Vol 3, Issue 1, PP. 837 - 849 (2015).
[5]. Meena. S and Usharani. S, "Product cordial labeling of for some bicyclic graphs", Accepted for publication in the Communications in Mathematics and Applications (2022).
[6]. Meena. S and Usharani. S, "Product cordial labeling of some subdivision graphs", Communicated to Advances and Applications in Mathematical Sciences (2022).
[7]. Meena. S and Usharani. S, "Product Cordial Labeling of Circular Ladder Related Graphs", Advanced Engineering Science, Volume 54, Issue 02, October 2022, PP. 3269-3278.
[8]. Michael G. Domingo and Abraham P. Racca, "Product cordial graph in the context of some graphs operations on crown, helm and wheel graph", International mathematical

Fourm, Vol. 17, 2022, no. 2, 89-104.
[9]. Rokad. A.H, "Product cordial labelling of double wheel and double fan related graphs", Kragujevac Journal of Mathematics, Vol. 43(1) (2019), PP. 7-13.
[10]. Vaidya. S.K and Kanani. K.K, "Some cycle related product cordial graphs", International Journal of Algorithms, Computing and Mathematics 3(1) (2010), PP. 109 116.
[11]. Vijayan. A and Geena. P.J, "Strongly odd prime labeling of some path related graphs", Advances and Applications in Discrete Mathematics, Vol. 31, 2022, Pages. 53-66.

