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ABSTRACT 
A graph 𝐺 is said to be a product cordial graph if there exists a mapping𝑔 from 𝑉(𝐺) to {0,1} 
such that if each line 𝑟𝑡 is given the label 𝑔(𝑟). 𝑔(𝑡), then the cardinality of points with value 
0 and the cardinality of points with value 1 differ at most by 1 and the cardinality of lines with 
value 0 and the cardinality of lines with value 1 differ by at most 1. In this case, 𝑔 is said to be 
a product cordial labelling of 𝐺. In this article, we find the product cordial labelling of double 
wheel related graphs and we prove that the graphs such as 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 ⊙

𝐾 , 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 @𝑃 all are product cordial graphs. 
Keywords and phrases: Cordial labeling, Product cordial labeling, Double wheel graph, 
Corona product. 

1. INTRODUCTION 
Simple and finite graphs with 𝑝 points and 𝑞 lines consider in this article. For entire survey of 
graph labeling we refer [2]. Several variations of graph labelling have been developed 
including prime labeling and product cordial labeling [4,5,6,11]. Many researchers have 
studied product cordial graphs [7,8,9,10]. In this article, we find the existence of product cordial 
labeling of double wheel-related graphs such as 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 ⊙

𝐾 , 𝐷𝑊 @𝑃 . 
Definition 1.1.  

The corona product of two graphs P and Q is define as the graph got by take one copy of P and 
|𝑉(𝑃)| copies of Q and connecting the ith vertex of P  to all point in the ith copy of Q.   

Definition 1.2.  
A double wheel graph 𝐷𝑊  of dimension 𝑛 can be composed of 2𝐶 + 𝐾 . It consists of 2 
cycles of dimension 𝑛 where points of two cycles are all connecting to a middle point. 
Definition 1.3. 
  𝐷𝑊 @𝑃  is the graph got by joining 𝑃  at every point of the double wheel 𝐷𝑊 . 

2. MAIN RESULTS 
The product cordial labeling of double wheel-related graphs were investigated in this paper. 
Theorem 2.1. 
 𝐷𝑊 ⊙ 𝐾  is a product cordial graph. 
Proof:   
Let 𝐺 = 𝐷𝑊 ⊙ 𝐾  
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Let {𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 } denote the points of the double wheel of 𝐺 where 𝑠  is apex 
point, {𝑠 … 𝑠 } are rim points of the first cycle and {𝑡 , 𝑡 , … , 𝑡 } are rim points the of second 
cycle. 
Let {𝑠 , 𝑠 , … , 𝑠 } and {𝑡 𝑡 … 𝑡 } be the pendant points attached at {𝑠 𝑠 … 𝑠 } and 
{𝑡 , 𝑡 , … , 𝑡 } respectively. 
Let 𝑉(𝐺) = {𝑠 , 𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡 } 
       𝐸(𝐺) = {𝑠 𝑠ℓ / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ  / 1 ≤ ℓ ≤ 𝑛 − 1} 
      ∪ {𝑠ℓ𝑠ℓ / 0 ≤ ℓ ≤ 𝑛} ∪ {𝑠 𝑡ℓ /1 ≤ ℓ ≤ 𝑛} 
      ∪ {𝑡ℓ𝑡ℓ  /1 ≤ ℓ ≤ 𝑛 − 1} ∪ {𝑡ℓ𝑡ℓ / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑠 𝑠 , 𝑡 𝑡 } 
Give a labeling ℎ from 𝑉(𝐺) to {0,1}by: 
  ℎ(𝑠 ) = 1 ;  ℎ(𝑠 ) = 0                     
ℎ(𝑠ℓ) = 1  for 1 ≤ ℓ ≤ 𝑛 
  ℎ(𝑠ℓ) = 1  for 1 ≤ ℓ ≤ 𝑛 
ℎ(𝑡ℓ) = ℎ(𝑡ℓ) = 0 for 1 ≤ ℓ ≤ 𝑛 
Here, 𝑣 (0) = 2𝑛 + 1, where 𝑣 (0) is number of points with value 0 
         𝑣 (1) = 2𝑛 + 1, where 𝑣 (1) is number of points with value 1 
    𝑒 (0) = 3𝑛 + 1, where 𝑒 (0) is number of lines with value 0 
   𝑒 (1) = 3𝑛, where𝑒 (1) is number of lines with value 1 
Thus the absolute difference of 𝑣 (0) and 𝑣 (1)is less than or equal to 1 and the absolute 
difference of 𝑒 (0)and 𝑒 (1) is less than or equal to 1. 
Hence 𝐷𝑊 ⊙ 𝐾  is a product cordial graph. 

Illustration 2.1.1 

 

Figure 1: Product cordial labeling of 𝐷𝑊 ⊙ 𝐾  
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Theorem 2.2. 

 𝐷𝑊 ⊙ 𝐾 is a product cordial graph. 

Proof: 
  Let 𝐺 = 𝐷𝑊 ⊙ 𝐾  
Let {𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 } denote the points of double wheel of 𝐺 where 𝑠  is apex point, 
{𝑠 … 𝑠 } are rim points of first cycle and {𝑡 , 𝑡 , … , 𝑡 } are rim points of second cycle. 
Let {𝑠 , 𝑠 , … , 𝑠 , 𝑠 , 𝑠 , … , 𝑠 } and {𝑡 𝑡 … 𝑡 , 𝑡 𝑡 … 𝑡 } be the pendant points attached at 
{𝑠 𝑠 … 𝑠 } and {𝑡 , 𝑡 , … , 𝑡 } respectively. 

Let 𝑉(𝐺) =
𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 , 𝑠 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡 ,

𝑠 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡
 

       𝐸(𝐺) = {𝑠 𝑠ℓ / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ  / 1 ≤ ℓ ≤ 𝑛 − 1} 
      ∪ {𝑠ℓ𝑠ℓ / 0 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ  / 0 ≤ ℓ ≤ 𝑛} 
      ∪ {𝑠 𝑡ℓ / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑡ℓ𝑡ℓ  / 1 ≤ ℓ ≤ 𝑛 − 1} 
     ∪ {𝑡ℓ𝑡ℓ / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑡ℓ𝑡ℓ  / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑠 𝑠 , 𝑡 𝑡 } 
Give a labeling ℎ from 𝑉(𝐺) to {0,1}by: 
  ℎ(𝑠 ) = 1;   ℎ(𝑠 ) = 1;   ℎ(𝑠 ) = 0                      
ℎ(𝑠ℓ) = 1    for 1 ≤ ℓ ≤ 𝑛 
  ℎ(𝑠ℓ) = 1    for 1 ≤ ℓ ≤ 𝑛 
  ℎ(𝑠ℓ ) = 1    for 1 ≤ ℓ ≤ 𝑛 
ℎ(𝑡ℓ) = ℎ(𝑡ℓ) = ℎ(𝑡ℓ ) = 0  for 1 ≤ ℓ ≤ 𝑛 
Here, 𝑣 (0) = 3𝑛 + 1, 𝑣 (1) = 3𝑛 + 2 
  𝑒 (0) = 4𝑛 + 1, 𝑒 (1) = 4𝑛 + 1 
 Thus the absolute difference of 𝑣 (0) and 𝑣 (1)is less than or equal to 1 and the 
absolute difference of 𝑒 (0)and 𝑒 (1) is less than or equal to 1. 
Hence 𝐷𝑊 ⊙ 𝐾  is a product cordial graph. 

Illustration 2.2.1 
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Figure 2: Product cordial labeling of 𝐷𝑊 ⊙ 𝐾  

Theorem 2.3. 
 𝐷𝑊 ⊙ 𝐾 is a product cordial graph. 
Proof.   
Let 𝐺 = 𝐷𝑊 ⊙ 𝐾  
Let {𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 } denote the points of double wheel of 𝐺 where 𝑠  is apex point, 
{𝑠 … 𝑠 } are rim points of first cycle and {𝑡 , 𝑡 , … , 𝑡 } are rim points of second cycle. 

Let {𝑠 , 𝑠 , … , 𝑠 , 𝑠 , 𝑠 , … , 𝑠 , 𝑠 , 𝑠 , … , 𝑠 } and 
𝑡 𝑡 … 𝑡 , 𝑡 𝑡 … 𝑡 ,

𝑡 𝑡 … 𝑡
 be the pendant 

points attached at {𝑠 𝑠 … 𝑠 } and {𝑡 , 𝑡 , … , 𝑡 } respectively. 

Let 𝑉(𝐺) =
𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 , 𝑠 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡 ,

𝑠 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡 , 𝑠 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡
 

       𝐸(𝐺) = {𝑠 𝑠ℓ / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ  / 1 ≤ ℓ ≤ 𝑛 − 1} 

      ∪ {𝑠ℓ𝑠ℓ /0 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ  / 0 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ  / 0 ≤ ℓ ≤ 𝑛}  

                ∪ {𝑠 𝑡ℓ / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑡ℓ𝑡ℓ  / 1 ≤ ℓ ≤ 𝑛 − 1} ∪ {𝑡ℓ𝑡ℓ / 1 ≤ ℓ ≤ 𝑛} 

                ∪ {𝑡ℓ𝑡ℓ  / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑡ℓ𝑡ℓ  /1 ≤ ℓ ≤ 𝑛} ∪ {𝑠 𝑠 , 𝑡 𝑡 } 

Give a labeling ℎ from 𝑉(𝐺) to {0,1} by: 

  ℎ(𝑠 ) = 1;  ℎ(𝑠 ) = 0;  ℎ(𝑠 ) = 0                     

ℎ(𝑠ℓ) = ℎ(𝑠ℓ) = ℎ(𝑠ℓ ) = 1  for 1 ≤ ℓ ≤ 𝑛 

  ℎ(𝑠ℓ ) = 1    for 0 ≤ ℓ ≤ 𝑛 

ℎ(𝑡ℓ) = ℎ(𝑡ℓ) = ℎ(𝑡ℓ ) = ℎ(𝑡ℓ ) = 0 for 1 ≤ ℓ ≤ 𝑛 

Here, 𝑣 (0) = 4𝑛 + 2, 𝑣 (1) = 4𝑛 + 2, 𝑒 (0) = 5𝑛 + 2, 𝑒 (1) = 5𝑛 + 1 

    Thus the absolute difference of 𝑣 (0) and 𝑣 (1)is less than or equal to 1 and the 
absolute difference of 𝑒 (0)and 𝑒 (1) is less than or equal to 1. 

Hence 𝐷𝑊 ⊙ 𝐾  is a product cordial graph. 

Illustration 2.3.1.                                   
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Figure 3: Product cordial labeling of 𝐷𝑊 ⊙ 𝐾  

Theorem 2.4.  
 𝐷𝑊 ⊙ 𝐾 is a product cordial graph. 
Proof.   
Let 𝐺 = 𝐷𝑊 ⊙ 𝐾  
  Let {𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 } denote the points of double wheel of 𝐺 where 𝑠  is apex 
point, {𝑠 … 𝑠 } are rim points of first cycle and {𝑡 , 𝑡 , … , 𝑡 } are rim points of second cycle. 
Let {𝑠 , 𝑠 , … , 𝑠 , 𝑠 , 𝑠 , … , 𝑠 } and {𝑡 𝑡 … 𝑡 , 𝑡 𝑡 … 𝑡 } be the pendant points attached at 
{𝑠 𝑠 … 𝑠 } and {𝑡 , 𝑡 , … , 𝑡 } respectively. 

Let 𝑉(𝐺) =
𝑠 , 𝑠 , … , 𝑠 , 𝑡 , 𝑡 , … , 𝑡 , 𝑠 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡 ,

𝑠 , 𝑠 , … , 𝑠 , 𝑡 𝑡 … 𝑡
 

       𝐸(𝐺) = {𝑠 𝑠ℓ /1 ≤ ℓ ≤ 𝑛 } ∪ {𝑠ℓ𝑠ℓ  / 1 ≤ ℓ ≤ 𝑛 − 1} 
      ∪ {𝑠ℓ𝑠ℓ / 0 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ  / 0 ≤ ℓ ≤ 𝑛} 
                 ∪ {𝑠ℓ𝑠ℓ  / 0 ≤ ℓ ≤ 𝑛} ∪ {𝑠 𝑡ℓ /1 ≤ ℓ ≤ 𝑛} 
                      ∪ {𝑡ℓ𝑡ℓ  / 1 ≤ ℓ ≤ 𝑛 − 1} ∪ {𝑡ℓ𝑡ℓ / 1 ≤ ℓ ≤ 𝑛} 
                 ∪ {𝑡ℓ𝑡ℓ  / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑡ℓ𝑡ℓ  / 1 ≤ ℓ ≤ 𝑛} ∪ {𝑠 𝑠 , 𝑡 𝑡 } 
Give a labeling ℎ from 𝑉(𝐺) to {0,1}by: 
  ℎ(𝑠 ) = 1;  ℎ(𝑠 ) = 1;   ℎ(𝑠 ) = 0                     
ℎ(𝑠ℓ) = ℎ(𝑠ℓ) = ℎ(𝑠ℓ ) = 1  for 1 ≤ ℓ ≤ 𝑛 
  ℎ(𝑡ℓ) = ℎ(𝑡ℓ) = ℎ(𝑡ℓ ) = 0  for 1 ≤ ℓ ≤ 𝑛 
Here, 𝑣 (0) = 3𝑛 + 1, 𝑣 (1) = 3𝑛 + 2 
    𝑒 (0) = 5𝑛 + 2, 𝑒 (1) = 5𝑛 + 1.  
Thus the absolute difference of 𝑣 (0) and 𝑣 (1)is less than or equal to 1 and the absolute 
difference of 𝑒 (0)and 𝑒 (1) is less than or equal to 1. 
Hence 𝐷𝑊 ⊙ 𝐾  is a product cordial graph. 
Illustration 2.4.1.  
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Figure 4: Product cordial labeling of𝐷𝑊 ⊙ 𝐾  

Theorem 2.5. 
 𝐷𝑊 @𝑃 is a product cordial graph. 
Proof.   
Let 𝐺 = 𝐷𝑊 @𝑃  
Let 𝑠  be the apex point of double wheel in 𝐺 and let 𝑠 , 𝑠 , 𝑠  be the points 𝑃  attached at 𝑠 . 

Let 𝑠 , 𝑠 , … , 𝑠  and 𝑡 , 𝑡 , … , 𝑡  be the points of two cycles of double wheel. Let 𝑠ℓ, 𝑠ℓ, 𝑠ℓ  be 
the points of path 𝑃  attached at 𝑠ℓ for 1 ≤ ℓ ≤ 𝑛 and let 𝑡ℓ, 𝑡ℓ, 𝑡ℓ  be the points of path 𝑃  
attached at 𝑡ℓ for 1 ≤ ℓ ≤ 𝑛. 

Let 𝑉(𝐺) = {𝑠 , 𝑠 , 𝑠 } ∪ {𝑠ℓ, 𝑠ℓ, 𝑠ℓ , 𝑡ℓ, 𝑡ℓ, 𝑡ℓ /1 ≤ ℓ ≤ 𝑛} 

        𝐸(𝐺) = {𝑠 𝑠 , 𝑠 𝑠 } ∪ {𝑠 𝑠ℓ, 𝑠 𝑡ℓ /1 ≤ ℓ ≤ 𝑛} ∪ {𝑠ℓ𝑠ℓ/1 ≤ ℓ ≤ 𝑛} 

       ∪ {𝑠ℓ𝑠ℓ /1 ≤ ℓ ≤ 𝑛} ∪ {𝑡ℓ𝑡ℓ/1 ≤ ℓ ≤ 𝑛} ∪ {𝑡ℓ𝑡ℓ /1 ≤ ℓ ≤ 𝑛} ∪

{𝑠 𝑠 , 𝑡 𝑡 } 

Give a labeling ℎ from 𝑉(𝐺) to {0,1}by: 

  ℎ(𝑠 ) = ℎ(𝑠 ) = 1;   ℎ(𝑠 ′′) = 0 

 ℎ(𝑠ℓ) = ℎ(𝑠ℓ ) = ℎ(𝑠ℓ ) = 1 for 1 ≤ ℓ ≤ 𝑛 

 ℎ(𝑡ℓ) = ℎ(𝑡ℓ ) = ℎ(𝑡ℓ ) = 0 for 1 ≤ ℓ ≤ 𝑛 

Here, 𝑣 (0) = 3𝑛 + 1,  𝑣 (1) = 3𝑛 + 2, 

       𝑒 (0) = 4𝑛 + 1, 𝑒 (1) = 4𝑛 + 1. 

Thus the absolute difference of 𝑣 (0) and 𝑣 (1)is less than or equal to 1 and the absolute 
difference of 𝑒 (0)and 𝑒 (1) is less than or equal to 1. 

Hence 𝐷𝑊 @𝑃  is a product cordial graph. 
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Illustration 2.5.1 

                                           

Figure 5: Product cordial labeling of 𝐷𝑊 @𝑃  

3. CONCLUSION 
The product cordial labeling of various classes of graphs such as 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 ⊙

𝐾 , 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 ⊙ 𝐾 , 𝐷𝑊 @𝑃  were investigated. To derive analogous results for some 
other graph families and other graph labelings in an open research problems. 
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