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Abstract 
Investors must constantly balance the competing objectives of lowering risks and 
simultaneously increasing earnings in all markets. American financial economist Harry 
Markowitz developed the so-called optimal portfolio theory in 1952, taking into consideration 
the trade-offs between risk and return. In this work, a novel GA based on Q-learning was 
developed to maximise returns and minimize losses. When compared to a convective GA, the 
suggested approach is then used to assess the model's efficacy. 
1. Introduction 
Portfolio optimization is a technique for increasing net returns while decreasing risk in a 
portfolio. A portfolio is a selection of stocks selected by the investor. Risk is described as the 
risk of losing all or part of the original investment. Returns are the earnings made when the 
stock price increases above the original investment[1]. The goal of decreasing risks or gaining 
greater benefits while retaining the same level of risk may be achieved by applying probability 
statistics, linear algebra, optimization, and other approaches to rebalance the investment 
portfolio within the set target returns and risk restrictions. Portfolio optimisation is the process 
by which investors seek to maximise return while minimising risk. Because the payoff varies 
with the level of risk taken, investors must find a way to balance the two. The ideal portfolio 
is defined by the investor's risk and return choices. 
The Risk greatly influences the selection of equities for a portfolio. Figure 1 depicts the 
efficient frontier graph that investors often apply to mitigate these risks[2]. 
 

 
Figure 1: Portfolio optimization 
On the x-axis is shown the data's standard deviation, which is sometimes called to as the risk 
tolerance in common usage. You may see the projected return rate as a percentage along the y-
axis. The spots that are perfect are located along the solid line, which is sometimes referred to 
as the border line. We consider any places that fall outside of the curve to be less desirable than 
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those that fall inside. This is because better anticipated returns have been achieved with 
maintaining the same degree of risk[3]. 
The goal of portfolio optimization is to increase returns relative to risk taken within the 
portfolio, making it a helpful tool for investors looking to maximise the risk-return trade-off. 
Investors may reduce risks and maximize relevant profits while this system is in effect. They 
might do this with the support of a top-notch portfolio manager, who can assist in selecting the 
ideal ratio between high-risk and low-risk investment vehicles to achieve the trade-off goals. 
The projected rate of return and the degree of risk that the investors are willing to bear would 
always guide the decision[4]. Last but not least, it's crucial to remember that, even though every 
model and theory has benefits and drawbacks, portfolio managers may maximize the 
advantages of the portfolio maximizing method if they use the technique diligently. 
The advantages of the portfolio optimization are given below: 

 utilizing portfolio optimization is one way to increase the potential for a positive return 
on investment. This may be performed by the use of the efficient frontier graph, which 
identifies the point at which the risk-return trade-off of the portfolio reaches its highest 
point and produces the optimal portfolio[5]. 

 The optimization of the portfolio helps to contribute to the higher degree of variety that 
the portfolio has. The manager of the portfolio decides to go with a diversified 
investment strategy so that the underperformance like any one property will not have 
an influence on the performance of the portfolio as a whole[6]. 

In order to choose the optimal portfolio for their clients or investors, portfolio managers do a 
large amount of research into the relevant markets. Because of their research, they are able to 
see opportunities in the market before other persons do, which is ultimately advantageous for 
the customers or investors in question. 
Contribution 

 In this paper, a novel genetic algorithm (GA) based on Q-learning is proposed. 

 The proposed model is compared with Convectional GA. 

Organization 
After this, the remaining parts of a paper are structured as follows: 
Section 2 describes Background study. Section 3 explains the proposed methodology. We 
analyze and discuss the experimental results in Section 4. the paper is concluded in Section 5. 

1. Background 

Q-learning: 
In 1989, Chris Watkins gave the first presentation on Q-learning. In the year 1992, Watkins 
and Peter Dayan presented a convergence proof. back to the circumstances of the consequence 
scenario that were experienced earlier in time. back propagates[7]. 
Q-Learning is a Reinforcement learning approach that, Given the present state of the process, 
will always choose the most suitable next step to take. This particular competition is selected 
at random, and the objective is to win the most valuable reward available. Q-learning is a sort 
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of off-policy relevance feedback that does not need a model in order to work. Instead, it simply 
takes into consideration the agent's present state in order to decide the most productive course 
of action and then propose it. The next action that has to be taken will be decided by the agent 
based on its current location within its surroundings and will rely on what it finds. The purpose 
of the model is to identify[8], given the existing conditions, the action that would be most 
beneficial to do. It is possible that in order to achieve this objective, it will be necessary for it 
to devise its very own framework of rules or deviate from the conventional practice[9]. The 
fact that this is the case demonstrates that there is not really a need for a policy, which is why 
we refer to it as off-policy. The use of predictions about the expected response of the 
environment by the agent in order to make judgments is what is meant when we talk about 
model-free decision making. People are more likely to learn from their mistakes and 
experiences than they are from receiving rewards[10]. 
Imagine a computational being that moves through a finite and discrete world by selecting 
single action at each time step in the process of doing so. A Markov process is under the agent's 
control. The agent may take into account the je  ( )E  state of the world and decide on an 

action 1( )jc  , at step j. The law guarantees that the agent will get a probabilistic 

compensation ju  whose mean value ( )
je jX c  is principally dependent on state as well as action, 

and that the world will change probabilistically to jf . 

Prob[ [ , ] [ ]
jj j j u jf f e c S c                         (1)                                                                                          

The agent must choose a policy that maximizes discounted anticipated return. Discounted 

rewards are worth (0 1)y    less than rewards earned presently. With respect to a given 

policy  , the worth of a given state x  is 

( ) ( ( )) [ ( )] ( )e ef
f

Z e X e S e Z f               (2)                                                                          

because the agency expects to get ( ( ))eX e  quickly for carrying out the action prescribed by

 , and so proceeds to a state 'worth' ( )Z f  to it, given probability [ ( )]efS e  According to 

DP theory, there is at minimum one optimal stationary policy *  that 

*( ) ( ) max ( ) [ ] ( )e ef
c

f

Z x Z e X c S c Z f 
     

 
    (3)                                                                       

from state x . DP presents many ways for estimating Z   and one   , assuming ( )eX c  and 

[ ]efS c . Q learners must determine a    without knowing these values. Traditional approaches 

(e.g., Sato, Abe & Takeda, 1988) for learning ( )eX c  as well as [ ]efS c   while executing DP 

assume certainty equivalence, i.e., expensive in the early phases of learning because decisions 
are made as if the current model is valid (Barto & Singh, 1990). Because it finds the best policy 
step-by-step, Watkins (1989) calls Q-learning incremental dynamic programming.  
Policy  defines Q action-values as: 

( , ) ( ) [ ( )] ( )e
e ef

f

T e c X c S e Z f         (4)                                                                             
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Q-learning aims to anticipate the T value of the optimal policy values by discounting the 

expected payoff for an action at a state and a policy subsequently. ( , ) ( , ), ,T e c T e c e c     

for convenience. It is easy to establish that ( ) max ( , )cZ e T e c   as well as that if c  is an 

optimum policy action that optimizes and formed as ( )e c   . If an agent learns the T- values, 

it can readily choose the best action. There may be several optimum policies or c , but T   
values are unique.  

Q-learning involves a series of events, stages or episodes. In the thj  episode, the agent: 

Observes Current State of je . 

Selects and performs action jc . 

Observes the every next state jf . 

Gets an immediate payoff  ju  and 

adjusts its 1jT   values using a learning factor j , according to: 

1 1

1

(1 ) ( , ) [ ( )] ,

( , )

( , )

j j j j j j j j

j

j

T e c u Z f if e e and c c

T e c

T e c

   



      



         (5)                                                                   

Otherwise, Where 

1 1( ) max ( , )j j
d

Z f T f d                           (6)                                                

from state f. At first, T values may not be an accurate reflection of the policies they imply (the 

maximizing actions in equation 2). The initial T values, 0( , )T e c  is assumed for all states and 

actions. 
Markowitz 
The Markowitz Model Parameters, Determined Using Historical Stock Price Information 
Rate of Return 
The amount of an investment's gains to its losses, represented as a percentage, is referred to as 
the rate of interest[11]. When discussing investments, the phrase "cost basis" means the initial 
sum of money that is invested. 
It is possible to calculate an investor's expected rate of return by making use of both the existing 
data and estimates for potential new investors. In most cases, percentages are used in order to 
represent the outcomes of the rate of return. 

The formula below is being used to calculate the arithmetic returns tevov on an asset investment 

made between time te  and time te  and 1te  . 

1

1

te te
te

te

Sv Sv
vov

Sv





                                         (7) 

Where teSv  is the stock price at time, as well as we assume for the time being that these stock 

pays dividend, and 1teSv   is the price in time 1te  . 

Expected Return  
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Let's imagine we have “x” asset. The anticipated return on asset a, 1a  ,……, x is then 
calculated using the equation below. 

  1

qr a
tea te

a

n
F n

qr
               (8) 

Where qr is the number of times that we have calculated the return on asset a, and a
ten  is the 

return on asset a between periods te  and te-1, te =1, qr, and is the return on asset a between 
those two periods. 
Variance and Standard Deviation 
To get the variance of asset “a” the following formula is used to the data. 

   2

2 1

1

qr a
te aa te

a

n
Var n

qr


 


 




       (9) 

The confidence interval is frequently used by investors in order to determine the level of risk 
that is associated with their investment. The standard deviation is the statistical measure of risk 
that is used the most often since it demonstrates the degree to which actual values may deviate 
from their predicted values. The risk rises in proportion to the increase in the standard 
deviation, and vice versa. The formula for calculating the standard deviation looks like this: 

 2

2 1

1

qr a
te ate

a a

n

te


  


 




     (10) 

Covariance 

When we engage with assets, the symbol n n that corresponds to the numerous risks that are 

mapped out in the return covariance matrix is represented by the symbol. This matrix takes into 
account covariances between all possible pairings of assets and other items, in addition to 
variances in both its major and minor diagonals. 

2
1 12 1

2
21 2 2

2
1 2

n

n
n n

n n n

  
  

  



 
 
    
  
 





   



 

Where 

    1,

qr a b
te a te ba b te

ab

n n
Cvc n n

qr

 
 

 
       (11) 

 
 
Markowitz Model 
Before Harry Markowitz released the current portfolio theory in his work "Portfolio Selection" 
in 1952, investors focused mostly on assessing the risk and return of individual assets when 
creating investment portfolios[11]. This continued until Markowitz published the theory. When 
deciding which assets to include in the investment portfolio, we prioritized those that provided 
the highest return with the fewest potential drawbacks. Diversification is another one of 
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Markowitz's investment strategies, and it entails constructing a portfolio after determining the 
total risk of the portfolio, or a selectable portfolio as a whole as opposed to a portfolio 
consisting of individual companies that have already been preselected. Therefore, rather than 
concentrating on the actual attributes, the emphasis is placed on the assets, which are the 
relationships that exist between the characteristics. 
Harry Markowitz was recognized in 1990 with the Nobel Prize in Economics, together with 
Morton Miller and William Sharpe, for the contributions he made to the field of portfolio 
theory. It is based on the basic notion that the returns on investments over time are random 
variables. This allows for the computation of mathematical expectations as well as standard 
deviations, the latter of which is considered to be a proxy for investment risk. It is possible to 
demonstrate that the rate of return on portfolio F(nr) is just the total of the anticipated returns 
on the individual assets that make up the portfolio, taking into account a variety of factors, such 
as the proportional distribution of the assets within the portfolio. 
The nonlinear standard deviations and covariances of return on individual assets are employed 

in the calculation of the standard deviation s , which is used to assess investment risk. The 

idea of diversification as proposed by Markowitz is hindered by the observation that the 
proportional increase in the number of covariances that takes place whenever the number of 
assets in a portfolio expands is also present[12]. As a consequence of this, the risk associated 
with the portfolio will be determined more by the covariance between assets than it would be 
by the risk associated with the assets individually. The mathematical statement that follows 
corresponds to the apparent form of parametric optimization that is shown by the Markowitz 
model. 

 
1

1 1

1

max max

min min

0 1, 1,...,

1

x

a aa

x x

sv a b aba b

a

x

aa

F nrn

a x

 

   







 







  




 



       (12) 

Where a  represents the proportion of capital that will be invested in asset a, an  stands for the 

asset's return, a stands for the asset's anticipated return, ab  stands for the covariance between 

the returns of assets a  and b ,  F nrn  stands for the stock's expected return, S  stands for the 

risk of the portfolio. 
This model is simple enough for theoretical analysis as well as numerical solutions, and it can 
account for the vast majority of the real-world conditions that are encountered. This model is 
still referred to by the name of its creator, Markowitz, despite the fact that it can also be 
expressed as a Mean-Variance model. The Markowitz model is founded on a number of 
assumptions and presumptions regarding the behavior of investors and financial markets. 
Investors are able to make an accurate prediction on the potential return distributions for a 
given holding time. 
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Single-period utility is the kind of utility that entrepreneurs focus on, with the goal being to 
maximize their utility in light of the declining marginal usefulness of wealth. 
Investors consider the range of possible returns on an investment to be a useful proxy for the 
level of risk associated with the endeavor. 
Investors are only concerned with two metrics: the portfolio's average value and its average 
deviation over a predetermined period of time. 
As a measurement of both return and risk, investors look to the expected value of a probability 
returns distribution in addition to the variance of that distribution. 
Gain is preferable, but one should try to prevent loss at all costs. 
Genetic Algorithm 
An optimization method inspired by the principles of heredity and natural selection is the 
Genetic Algorithm, or GA. It is sometimes abbreviated as GA. It is extensively used to find 
optimal or near-optimal solutions to difficult problems, the resolution of which would 
ordinarily take the work of a whole lifetime[13]. In addition to being used for the aim of 
resolving optimization-related challenges, it is also often employed in the research and machine 
learning domains. 
Fitness Function 
Each parameter's value is input into the fitness function, which then outputs a single number 
indicating how effective the solution is. 
Based on the categorization method, a preliminary collection is created. According to this 
interpretation, the partition of the space is made up of relations between the characteristics that 

are indistinguishable from one another. Given a decision table  , , ,S U R V f , U  is a finite 

collection, or a domain, and R  is an attribute set of elements both the condition attribute set C  
and the decision attribute set D . 
Each attribute subset A R  corresponds to a class in domainU , as well as the indiscernible 

binary connection  IND A  between those classes is defined as follows: 

         2, ,IND A x y U a A a x a y      

       U IND A X X U x X y X a A a x a y          

According to the decision table S , the lower and upper approximation sets of X are computed 

as follows for every subset in and comparable class for attribute subset inU . 

    A X U Y Y U IND A Y X      

    A X U Y Y U IND A Y X        

Finding the optimal breakpoints entails minimising the number the breakpoints while 
safeguarding the undecidable relations in the decision table, hence these two metrics should be 
used to create the fitness function: 

   t D
D

I

N N
Fitness D R

N


   
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where DN  is the number of breakpoints, I DN N N    is the change in the number of 

breakpoints, and IN  is equal to the number of points that made up the first breakpoint set. The 

values of DR  are 0 and 1, respectively, indicating whether or not the discretization affects the 

decision table's indiscernibility. 

 
Figure 2 GA flowchart 
The steps of a genetic algorithm look like this:  
Step 1: Find the value for the generation, mutation, and crossover rates as well as the number 
of chromosomes. 
Step 2: Make up a random number for the population's chromosome pairings and use it as the 
starting point for the genes' chromosome pairings. 
Step 3: To get the appropriate number of generations, repeat steps 4–7. 
Step 4: Analysis of chromosomal utility for fitness purposes 
Step 5: Chromosomes selection  
Step 6: Crossover  
Step 7: Mutation  
Step 8: Solution (Best Chromosomes) 
The flowchart of algorithm can be seen 
2. Methodology 

Reinforcement Learning-Based Genetic Algorithm  
A genetic algorithm is a method that can be applied to any problem in the field of artificial 
intelligence. To dynamically alter the population's diversity, we implemented a method of 
regulate the approximate sets-based fitness value[14]. We also used a reinforcement learning 
method to choose the cross segments as well as point mutations in a discretization scheme that 
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can be adjusted for various multidimensional data types. This significantly increased accuracy 
and accelerated convergence. The algorithm's flow was detailed below. 
Discretization Scheme Evolution to Be Optimised 
The best member of the population was kept around thanks to the global variable, while the 
best member of the discretization scheme was kept around due to the local variable. During 
each cycle, the population's fitness is calculated, the best member is identified, the global 
variable was updated, its discretization scheme is improved, cross- as well as The top performer 
in a population carries out the learning operations based on mutation, changing the local 
variable. The population continued to engage in regular evolutionary processes if the 
termination criterion was not met. Otherwise, the person with the highest The output is the 
fitness level calculated by comparing between global and local variables. 
Operator Selection Based on Control Function 
The examination of each person's fitness within the population serves as the foundation for the 
selection process. Higher fitness levels often increase the likelihood of selection. Roulette is a 
straightforward, effective, and selection method based on the laws of probability. The chance 
that person i is chosen is P(i) where n is the number of individuals and fi, is the fitness value of 
i. 
 

1

i
i n

ij

f
P

f





 

 

 
Figure 3 Evolution of the discretization scheme to be optimized. 
Although fit people are even more likely to be selected, this reduces population diversity. 

Individuals having a fitness value of 0 are not selected during population evolution. DR only 

accepts values of 0 or 1. Although initially not viable choices, these people could be quite near 

to the ideal possible answer and ultimately turn into it. However, feasible solutions with 1DR 

and possible viable solutions with 0DR  tend to be quantitatively identical when taking into 

account the randomness and evenness of the original population. Due to the intricate interaction 
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between the characteristics of multidimensional data, even with a small population, 0DR 

offers far more probable workable solutions than 1DR  . Because the bulk of the population's 

plausible solutions were rejected when roulette was employed for individual selection, the 
population's variety was decimated. 

( )
( ) ,

zx
I D

I

N N
x

N


 
  
 

 

According to the analysis that was mentioned earlier, We increased the fitness function by 
layering the controller on top of the real basis, as well as we determined the governing variables 
that in order to maintain the population's diversity, depend on the percentage of effective 
solutions present at any given time during the evolutionary process. during the early phase of 
development and speeding people's tendencies to converge on a single best answer as we near 
the end of development. When this happens, its X chromosome's fitness value increases to 
Fitness. 

( )
( ) ( ) ( ).

x
xI D
D

I

N N
x R p x

N
 

     

The control function has two parts: the control item, ( )x , and the control factor, , ( )p where 

( )p is the fraction of solutions in the population that are feasible and have an 0DR  , As well 

as ( )p is a function of p . Both ( )x as well as ( )p may be expressed as 

  1

2 1

0, 1

0 1

1
0

2 log

pp

k N



  






 
  
     

 

1
( ( _( )) ( ( )', ( )))

2

k

i i ii
setcmp C d setcmp C d C d

k


 



  

where IN is the number of breakpoints with in initial breakpoint set, x
DN  is the number of 

breakpoints procured after chromosome x  decoding, x
DR  seems to be the change of a decision 

table's indiscernible relationship after becoming discretized by chromosome ,x k is the number 

of classes, id  is the ith class, ( )iC d as well as ( )iC d are the lower as well as higher 

approximation sets of id  before discretization, as well as If ( , )setcmp setA setB are equal, then 

perhaps the method returns 1, else it returns 0. Considering that each category has its own upper 
and lower approximation set, the possible values for M are all 0 1  . These observations 

pertain to the enlarged fitness function:  

 The situation where fitness value of a feasible solution using 1DR  will be less than or 

equivalent to that of the potential viable solution with, 0DR  is one that we want to 
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avoid. meaning that there exists a circumstance where there are as many thresholds 
between the two as there are between the two variables. For this reason, we insist that 
z, the index of the variable under control, fulfil z>1. Here, z equals 2 for our purposes. 

  As can be seen, the value range of   is really 2 1K  distinct points with an interval of

1/ 2k , ranging from 0 to 1. The decision table's indiscernibility is lost after 
discretization when 0  . The value of the control function is less than the minimum 

nonnegative value because 0 1  , 1/ 2K  , For conceivably possible solutions 

with 0DR  , the need of providing a control function is nullified if 0  .In order to 

reflect this, we altered the equation 1 p   to 1
2 1(1 / (2 log )) pk N  . Therefore, the control 

function has a non-zero value at 0  , and this value is less than the value at 1/ 2K 
. Having "2" as that of the base number and N1 as the actual number makes possible to 
limit the difference between 0  and 1/ 2K  control function values to an 

acceptable level, thereby regulating the selection of persons extremely effectively even 
though the chromosome is binary coded. 

 When 1  , 1DR  , and ( ) 0p  , this person is a possible solution, and the control 

item's value is 0. When 0 1   and 0 1  , and when p is the independent variable 

and ( )p  is an increasing function. It is important to remember that p is big as there 

are few or even no solutions with in population during the first phases of evolution. At 
this point, ( )p  should be pretty big, so that in rouletteThere is a good possibility of 

picking a suitable answer, and also the search is progressively narrowed down to that 
space. p decreases because the population gradually becomes dominated by better and 
better solutions as evolution proceeds. Thus, as p decreases, ( )p should decrease, 

allowing us to move more quickly from practical to optimal solutions. 

Crossover Operator Based on Q-Learning 
In a genetic algorithm, the crossover operation is carried out by moving certain genes from one 
set of matched chromosomes to another set of chromosomes in order to produce two children. 
Nevertheless, multidimensional data consist of numerous characteristics, and cross fragments 
have a propensity to concentrate on aspects that have huge value intervals. As a result, the 
breakpoints on the other features no longer have the opportunity to be crossed. In spite of this, 
there were complex interrelationships between the features. The high chance of destruction of 
certain high-quality pieces was due to the fact Since without any kind of background 
information, improving the crossing operations of a needed discretization scheme is like flying 
blind. To accomplish this, we used Q-deliberative learning's capabilities to choose 
characteristics of a settings with different to optimise during each cross operation cycle. 
State: In accordance with the analysis that was presented before, the crossover procedure 
assigned a particular likelihood of variation to each characteristic. The state that is 
characterized by the shifting collection of characteristics that occurred throughout the 
crossover process. Due to the fact that there were N features in the multi-dimensional data, 
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each state in the search space is a mix of multiple of the attributes, and the space then 
partitioned in 2N 1 states. For the case when N = 3, there are seven distinct possibilities. 
Assuming that there are N features in the multidimensional data, the search space may be 
broken down into 2N 1 states, each of which is a unique permutation of the features. There are 

seven possible states when N = 3, for instance: 1 ,f    2 ,f     3 ,f     1 2, ,f f     1 3, ,f f    

 2 3, ,f f    as well as    1 2 3, , ,f f f   where if  is the ith feature of multidimensional data, 1 i N 

, as well as the elements in  relate to characteristics at the sites of most recent crossover and 

mutation. 
Action: According to the concept of states that was presented earlier, the number of 
states expanded exponentially if the data set in question is multidimensional. In general, 
multidimensional data included a significant number of characteristics. One action was 
required whenever there was a change from one state to the next; hence, there were numerous 
actions that needed to be specified, which increased the complexity of the calculation. 
According to the findings of the prior investigation, In particular, we set out to develop a way 
to prevent the situation where cross segments prioritised features with a wider value range 
throughout each crossover operation. This made it so certain thresholds could no longer be 
exceeded. Additionally, numerous high-quality passages were removed without any prior 
knowledge that serve as guidance. As a consequence, three distinct factors must be considered 
in relation to the current state when deciding which state to transition to after completing an 
activity. To begin, the features of one state are included inside the features of the previous state. 
Second, Extracted features from the subsequent state fill a gap in the collection of features for 
the current state. Third, the features of a present state and the previous state do not overlap. 
Thus, we may categorise actions into three groups (G, H, and I) with corresponding letters. 
Once the algorithm has completed an operation on the current state, it will go to the next state 
and perform a cross operation on all of the attributes of that state.  

Imagine that the current state is tS and the future state is 1tS  . The following examples illustrate 

how  ( )tG S  represents a random jump to any subset of the current state, ( )tG S represents a 

random jump to any subset of the complementary set of a current state, as well as ( )tH S  is not 

blank and does not represent a subset of a current state, then it denotes a random hop to that 
set.. 

1 ( ),t tS G S   
 1 | ,t t tS S S S S          

1 ( ),t tS H S        1 | ,t t tS S S S S       

1 ( ),t tS I S          1 | ,t t t tS S S S S S S S          

It is easy to see that the range of values for ( )tG S , ( )tH S  , As well as ( )tI S  covers all of the 

states 
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Reward: More can be accomplished, but only if you carefully choose the right feature set for 
each crossover operation. To get to the best solution as quickly as feasible, we assign a reward 
value to each conceivable state-action pairing. A algorithm's search for such optimal solution 
is evaluated in large part via the changes in individual performance, which is the basis for the 
reward value.    
When we give each possible combination of states and actions a reward, we may fast approach 
the ideal solution. In order to evaluate how well the algorithm is doing its job of finding the 
best possible solution, the reward is calculated as the percentage increase or decrease in each 

individual's fitness. In the formula mentioned below, 1( | )t t tP S S A  is the probability of 

jumping to the next state 1tS   after performing action tA  in the current state tS . This is related 

to the number stateN  of all of the possible states to jump to, which is 1/ stateN . fit ( )tS  and fit

1( )tS   are, respectively, the present and future state's individual fitness, and 1best is the 

scheme's best fitness in the past that has to be enhanced. 

   
     

   
     

1 1

1 1

1

1 1

5 , ,

1 , ,
Re

0, ,

1 , .

t t t t

t t t t t

t t

t t t t t

P S S A fit S lbest

P S S A fit S fit S lbest
ward

fit S fit S

P S S A fit S fit S

 

 



 

   

    


   

                                                             (11) 

If the optimal discretization scheme contains a cross operation, we may update Q in accordance 
with the planned reward value. 
Mutation Operator Based on Q-Learning 
Similar to how we used Q-decision-making learning's skills for such crossover operator, we 
used them for the mutation operation to choose attributes of a discretization scheme to optimise 
at each iteration. It was done this this in the hopes of improving the operation's success rate. 
The only change is that you'll be doing a mutation operation on the features instead of a cross 
one. Mutation and cross operations provide the same result (in terms of state, action, and 
reward) and are hence equivalent. Each person maintains their own, individual Q-table. The 
action of modifying a discretization scheme's two Q-tables in order to make use of the scheme's 
three features simultaneously. 

The value 0 is used to start off both Q-tables. Assuming that the current state is  1 3, ,f f  action 

H is selected for the cross operation. Accordingly, the state jumps to  2 ,f  as well as Q’s value 

of 1 is updated to 6 in cross operation. Then, state  2 ,f  selects action  2 3, ,f f  for the mutation 

operation. Accordingly, the state randomly jumps to  2 3, ,f f  as well as The mutation process 

increases Q′ from its initial value of 2 to 3. That manner, we can simultaneously update both 
Q-tables. 
Flow of RLGA  
We start by applying binary genetic coding toward a property of the dimensional data set in 
order to generate the state. Next, the Q-table is refreshed after the greedy algorithm is employed 
to choose an action, advance to the next state, and cross-operate with the global optimal person 
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with regard to a respective characteristics simultaneously. Similarly, a decision was made in 
the current state to carry out the mutation operation, resulting in a change to the Q-table. The 
population carried out the standard genetic operation and, at the end of each iteration, saved 
the person who was considered to be the most fit for the population as a whole. At the end of 
the procedure, the highest value of the either global or local variables is returned. While some 
members of the population have adapted to broaden the search field and enhance the probability 
of finding the best answer, the algorithm worked to optimise the discretization scheme offered. 
Whereas the algorithm was processing, this was done. 
Results and discussion 

 
Figure 4 Convectional GA results 
The above figure is the objective function of the Convectional GA, the value decreases by 
iteration process at iteration 20 the value got converged.  The best value obtained from CGA 
is 2.81406. 

 
Figure 5 Q-learning based GA results 
The above figure is the objective function of the Q-learning based GA, the value decreases by 
iteration process at iteration 27 the value got converged.  The best value obtained from Q-
learning based GA is 1.41336. 
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Figure 6 Comparison of CGA and RLGA 
The above figure is the comparison plot of the CGA and RLGA, the proposed RLGA got the 
effective results than CGA. The obtained best score values are tabulated below. 
Table 1 Objective function best values 
S.No Algorithm Objective function value (Best value) 
1 Convectional GA 2.81406 
2 RLGA 1.41336 

 

 
Figure 7 Computational time 
The aforementioned time is the total processing time for the two suggested methods plus CGA. 
It takes more time to run the suggested method than CGA does, but it outperforms CGA in 
every way.  

3. Conclusion 

The study proposed an effective optimization technique of Q-learning based GA algorithm. 
The proposed method minimized the best score value. It was figured from the outcomes of the 
proposed algorithm that the performance of the proposed algorithm was very effective. The 
computational time of the proposed model is high but it resulted in best. The computing time 
for the CGA is 30 seconds, but the best score value is 2.81406, but the computational time for 
the proposed model is 33 seconds, but the best score is 1.41336, which is less than CGA. It is 
clear from the comparison graph that Q-learning GA performs better than CGA. 
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