
JOURNAL OF NORTHEASTERN UNIVERSITY

Volume 25 Issue 04, 2022 ISSN: 1005-3026 https://dbdxxb.cn/ Original Research Paper

Submitted: 08/12/2022 Accepted: 27/12/2022

4743

OPTIMIZATION ANALYSIS OF PPI_MO BASED MATRIX MULTIPLICATION
USING IEEE 754 FLOATING POINT MULTIPLIER

1Asim Darshan, 2Ashish Raghuwanshi

Department of Electronics and Communication, IES college of Technology, Bhopal1,2

Abstract— In the present scenario, the rapid growth of wireless communication, multimedia
applications, robotics and graphics increases the demand for resource efficient, high throughput
and low power digital signal processing (DSP) systems. Floating point matrix multiplication is
the most widely used fundamental processing element in almost all DSP systems ranging from
audio/video signal processing to wireless sensor networks. Hardware implementation of
Floating point matrix multiplication requires a huge number of arithmetic operations that affect
the speed and consumes more area and power. Pipelining and parallel processing are the two
methods used in the DSP systems to reduce the area. Matrix multiplication is the kernel
operation used in many transform, image and discrete signal processing application. We
develop new algorithms and new techniques for matrix multiplication on configurable devices.
In this paper, we have proposed three designs for matrix-matrix multiplication. These design
reduced hardware complexity, throughput rate and different input/output data format to match
different application needs. The PPI-MO based matrix multiplication is design Xilinx software
and simulated number of slice, look up table and delay.
Keywords— IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating
Point (DP FP), Matrix Multiplication

1. Introduction
The key mission of this paper is to provide the background material necessary to follow the
kernel of this thesis. The wide dynamic range features of Floating point arithmetic system is a
common choice for many scientific and signal processing computations [1]. These applications
often aim at high performance floating point unit. Basic Linear operations, such as dot product,
vector and matrix multiplication are necessary for wide spectrum of computer applications.
Floating point matrix multiplication is a building block for many linear algebra kernels [2, 3].
Multiplication is a complex arithmetic operation which is reflected in its relatively high power
dissipation, high signal propagation delay, and large area requirement. Hence an efficient
multiplier design has become a significant part in VLSI system design. The overall
performance of the processing system is determined by the performance of the multiplier. By
using an efficient architecture for floating point matrix multiplication improves the
computation complexity of the system. In this research work, efficient floating point multipliers
are considered for performing matrix multiplication [4].
Floating point multiplication is considered as an abstruse subject though it is found everywhere
in a processor. A computer numerical computing capability is characterized with the number
of floating point operation per unit time (Mflop/s- Million of floating point operation per
second) [5]. Day by day processor is getting more complex in terms of design and its

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4744

performance analysis. In modern electronic systems, a multiplier is a fundamental arithmetic
unit and it is extensively used in circuits, for which the multiplication process should be
optimized properly. Floating point number system is a common choice for several scientific
computations due to its wide dynamic range feature. The word floating point means that, there
is no fixed number of digits before and after the decimal point; the decimal point can float. In
computation, floating point is the standard representation that approximates a real number so
as to support a trade-off between range and precision [6, 7].
Based on IEEE-754 standard, floating point formats are classified into binary and decimal
interchange formats. Floating point multipliers are very important in dsp applications. This
paper focuses on double precision normalized binary interchange format. Figure 1 shows the
IEEE-754 double precision binary format representation. Sign (s) is represented with one bit,
exponent (e) and fraction (m or mantissa) are represented with eleven and fifty two bits
respectively. For a number is said to be a normalized number, it must consist of'one' in the
MSB of the significand and exponent is greater than zero and smaller than 1023. The real
number is represented by equations (i) & (2).

).1(2)1()(MZ BiasEs (1)

).1(2)1()1023(MantissaValue Exponentsignbit (2)

Biasing makes the values of exponents within an unsigned range suitable for high speed
comparison.

IEEE 754 STANDARD FLOATING POINT MULTIPLICATION ALGORITHM
A brief overview of floating point multiplication has been explained below [5-6].

1. Both sign bits S1, S2 are need to be Xoring together, then the result will be sign bit of
the final product.

2. Both the exponent bits E1, E2 are added together, and then subtract bias value from it.
So, we get exponent field of the final product.

Sign Bit Significand Biased Exponent
Si

1-bit 8/11-bit 23/52-bit

Fig. 1: IEEE 754 Single Precision and Double Precision Floating
Point Format

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4745

II. MATRIX MULTIPLICATION
The basic tool of linear algebra is matrix multiplication. In all computational applications of
linear algebra matrix product computation is a central operation. Matrix multiplication is a key
computation for several Engineering applications and scientific computing. To the
performance of such applications, a fast and efficient implementation of matrix application is
critical. Implementation of high performance matrix multiplication can be used to measure the
potential performance of the target device [8].
Implementations of high performance level 3 BLAS operations are required in many complex
algorithms in digital signal processing, image and video processing applications. Based on the
computational applications and performance of the system, many algorithms have been
designed for matrix multiplication. There has been wide work for matrix multiplication on
parallel algorithms. Two classical algorithms are designed in which, each processor holds
consecutive blocks of data based on a square processor grid with a block data distribution. The
blocks on one processor are either broad cast to the other processor or transferred to its adjacent
processors in the same row throughout the iteration. It developed Parallel universal matrix
multiplication algorithm (PUMMA) which provides two-dimensional block cyclic data
decomposition for Foxes algorithm. Distribution–Independent Matrix Multiplication
Algorithm combines pipeline communication and LCM block concept to achieve the maximum
performance. The Scalable Universal Matrix Multiplication Algorithm (SUMMA) for
distributed memory concurrent computers. The blocks are broadcast based on flexible
broadcast- multiply- roll algorithm; the computation and communication on the processor are
overlapped. They parallelized a sequential algorithm on a linear array of processors, which
supports massive volume of data transfer on a pipeline optical bus. The proposed rank-1 update
algorithm, here sub block of matrices are obtained by multiplying two panels of matrices and
handle arbitrary sizes matrices. The Strassen algorithm named after Volker Strassen was used
in linear algebra which requires fewer multiplications of matrix elements than the classic matrix
multiplication method. It is faster than the standard matrix multiplication algorithms. Strassen

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4746

algorithm is a divide and conquer algorithm which partitions the matrix into sub matrices of
equal size and employ a divide and conquer strategy on each sub matrices. For a 2×2 matrix
multiplication, conventional algorithm requires 8 multiplication operations whereas Strassen’s
require only 7 multiplication operations and 18 addition or subtractions. The complexity of
Strassen algorithm is O(n2) but for classic algorithm the complexity is O(n3). Systolic array is
a homogeneous network of tightly coupled data processing units (DPUs) which rhythmically
compute a partial result by maintaining a regular flow of data in the network. The DPU process
the data received from its upstream neighbours, store the result within itself and passes it down
stream. The data stream entering and leaving the DPU are generated by Auto Sequencing
Memory Unit (ASM) which include a data counter. DPUs are connected to the neighbour cell
in a mesh -like topology and each DPU perform a sequence of processes on the data that flows
between them [11, 12].

III. PROPOSED METHODOLOGY

Proposed Parallel-Parallel Input and Multi Output(PPI-MO)
In this design, we opted for faster operating speed by increasing the number of multipliers and
registers performing the matrix multiplication operation.

From equation 2 we have derived for parallel computation of 3 × 3 matrix-matrix multiplication
and the structure is shown in figure 3.

For an n×n matrix – matrix multiplication, the operation is performed using 2n number of

multipliers, 2n number of registers and nn 2 number of adders. The registers are used to

store the partial product results. Each of the 2n number of multipliers has one input from matrix
B and the other input is obtained from a particular element of matrix A.

b31

b32
b33

b21

b22
b23

b11

b12
b13

a11 a21 a31

a12 a22 a32

a13 a23 a33

c33 c32 c31 c23 c22 c21 c13 c12 c11

Adder Adder Adder

Fig. 3: Proposed PPI – MO Design for n = 3

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4747

The dataflow for matrix B is in row major order and is fed simultaneously to the particular row

of multipliers such that the thi row of matrix B is simultaneously input to the thi row of
multipliers, where 1 < i < n . The elements of matrix are input to the multipliers such that,

thij),(element of matrix A is input to

The thji),(multiplier, where1 < i,j < n. The resultant products from each column of multipliers

are then added to give the elements of output matrix C. In one cycle, n elements of matrix C
are calculated, so the entire matrix the elements of matrix C are obtained in column major order
with n elements multiplication operation requires n cycles to complete.
Let us consider the example of a 3×3 matrix – matrix multiplication operation, for a better
analysis of the design (as shown in figure 1). The hardware complexities involved for this
design are 9 multipliers, 9 registers and 6 adders. Elements from the first row of matrix B (b11
b12 b13) are input simultaneously to the first row of multipliers (M11 M12 M13) in 3 cycles.
Similarly, elements from other two rows of matrix B are input to the rest two rows of

multipliers. A single element from matrix A is input to each of the multipliers such that, thij),(

element of matrix A is input to the multiplier Mij, where 1 < i,j < 3. The resultant partial
products from each column of multipliers (M1k M2k M3k where 1 < k 3) are added up in the
adder to output the elements of matrix C. In each cycle, one column of elements from matrix
C is obtained (C1k C2k C3k where1 < k < 3) and so the entire matrix multiplication operation is
completed in 3 cycles.

IEEE 754 Floating Point
In IEEE754 standard floating point representation, 8 bit Exponent field in single precision
floating point (SP FP) representation and 11 bit in double precision floating point (DP FP)
representation are need to add with another 8 bit exponent and 11 bit exponent respectively,
in order to multiply floating point numbers represented in IEEE 754 standard as explained
earlier. Ragini et al. [10] has used parallel adder for adding exponent bits in floating point
multiplication algorithm. We proposed the use of 8-bit modified CSA with dual RCA and 8-
bit modified CSA with RCA and BEC for adding the exponent bits. We have found the
improved area of 8-bit modified Carry select adder with RCA and BEC over the 8-bit modified
CSA with dual RCA.

- Sign bit calculation
To calculate the sign bit of the resultant product for SP FP and DP FP multiplier, the same
strategy will work. We just need to XOR together the sign bits of both the operands. If the
resultant bit is ‘1’, then the final product will be a negative number. If the resultant bit is ‘0’,
then the final product will be a positive number.

- Exponent bit calculation
Add the exponent bits of both the operands together, and then the bias value (127 for SPFP and
1023 for DPFP) is subtracted from the result of addition. This result may not be the exponent

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4748

bits of the final product. After the significand multiplication, normalization has to be done for
it. According to the normalized value, exponents need to be adjusted. The adjusted exponent
will be the exponent bits of the final product.

- Significand bit calculation
Significand bits including the one hidden bit are need to be multiply, but the problem is the
length of the operands. Number of bits of the operand will become 24 bits in case of SP FP
representation and it will be 53 bits in case of DP FP representation, which will result the 48
bits and 106 bits product value respectively. In this paper we use the technique of break up the
operands into different groups then multiply them. We get many product terms, add them
together carefully by shifting them according to which part of one operand is multiplied by
which part of the other operand. We have decomposed the significand bits of both the operands
ain four groups. Multiply each group of one operand by each group of second operand. We get
16 product terms. Then we add all of them together very carefully by shifting the term to the
left according to which groups of the operands are involved in the product term.

IV. Simulation Result
All the designing and experiment regarding algorithm that we have mentioned in this paper is
being developed on Xilinx 14.2i updated version. Xilinx 6.2i has couple of the striking features
such as low memory requirement, fast debugging, and low cost. The latest release of ISETM

(Integrated Software Environment) design tool provides the low memory requirement
approximate 27 percentage low. ISE 14.2i that provides advanced tools like smart compile
technology with better usage of their computing hardware provides faster timing closure and
higher quality of results for a better time to designing solution.
For parallel in multiple out shift registers, all data bits appear on the parallel input immediately
following the simultaneous entry of the date bits. Four-bit parallel in multiple out shift register
is constructed by four D flip-flops.
In fig. 4 and fig. 5 have shown the resistor transistor logic (RTL) using 3×3 PPI-MO matrix
multiplication and output waveform of 3×3 PPI-MO matrix multiplication respectively.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4749

Fig. 4: View Technology Schematic of 3×3 Matrix Multiplications using PPI-MO

Fig. 5: View Technology Schematic of 3×3 Matrix Multiplications using PPI-MO

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4750

Fig. 6: View Technology Schematic of 4×4 Matrix Multiplications using PPI-MO

Fig. 7: View Technology Schematic of 4×4 Matrix Multiplications using PPI-MO

Table I: Comparison Result

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4751

Table 2: Simulation result for 3×3 and 4×4 Matrix Multiplication

Structure Dimension Slice LUTs IOBs Delay
(ns)

MM
using
PPI-SO

3×3

44 15 34 11.222

MM
using
PPI-MO

93 154 74 15.058

MM
using
PFI-MO

34 55 38 9.128

Previous
Design
[1]

4×4

311 212 - 16.513

MM
using
PPI-SO

49 88 42 13.771

MM
using
PPI-MO

221 388 74 15.058

MM
using
PFI-MO

39 72 48 11.543

V. Conclusion
The floating point matrix multiplication for rank-1 update algorithm is designed using Urdhva
Tiryagbhyam multiplier based on pipeline processing. This proposed arithmetic level reduction
technique achieves area efficient matrix multiplication with reduced delay. The efficiency of

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4752

the proposed method is experimented using Xilinx 14.2i simulating tool. The block matrix
multiplication architecture is designed using Strassen matrix multiplication algorithm and
Urdhva Tiryagbhyam multiplier based on parallel processing. The Strassen algorithm using
divide and conquer method divides the matrix into 4×4 matrix and applies PPI_MO which
follows vertical and cross multiplications. By proper scheduling and reuse of available
resources the proposed algorithm increases the performance.

REFRENCES

[1] Chen Yang;Siwei Xiang;Jiaxing Wang;Liyan Liang, “A High Performance and Full
Utilization Hardware Implementation of Floating Point Arithmetic Units”, 28th IEEE
International Conference on Electronics, Circuits, and Systems (ICECS), IEEE 2021.

[2] Rongyu Ding;Yi Guo;Heming Sun;Shinji Kimura, “Energy-Efficient
Approximate Floating-Point Multiplier Based on Radix-8 Booth Encoding”, IEEE 14th
International Conference on ASIC (ASICON), IEEE 2021.

[3] Wei Mao;Kai Li;Xinang Xie;Shirui Zhao;He Li;Hao Yu, “A Reconfigurable Multiple-
Precision Floating-Point Dot Product Unit for High-Performance Computing”, Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE 2021.

[4] Rahul Rathod;P Ramesh;Pratik S Zele;Annapurna K Y, “Implementation of 32-Bit
Complex Floating Point Multiplier Using Vedic Multiplier, Array Multiplier and
Combined integer and floating point Multiplier (CIFM)”, International Conference for
Innovation in Technology (INOCON), IEEE 2020.

[5] S. Ross Thompson;James E. Stine, “A Novel Rounding Algorithm for a High
Performance IEEE 754 Double-Precision Floating-Point Multiplier”, 38th
International Conference on Computer Design (ICCD), IEEE 2020.

[6] P.L. Lahari;M. Bharathi;Yasha Jyothi M Shirur, “High Speed Floating Point Multiply
Accumulate Unit using Offset Binary Coding”, 7th International Conference on Smart
Structures and Systems (ICSSS), IEEE 2020.

[7] Lakshmi kiran Mukkara and K.Venkata Ramanaiah, “A Simple Novel Floating Point
Matrix Multiplier VLSI Architecture for Digital Image Compression Applications”,
2nd International Conference on Inventive Communication and Computational
Technologies (ICICCT 2018) IEEE.

[8] Soumya Havaldar, K S Gurumurthy, “Design of Vedic IEEE 754 Floating Point
Multiplier”, IEEE International Conference On Recent Trends In Electronics
Information Communication Technology, May 20-21, 2016, India.

[9] Ragini Parte and Jitendra Jain, “Analysis of Effects of using Exponent Adders in IEEE-
754 Multiplier by VHDL”, 2015 International Conference on Circuit, Power and
Computing Technologies [ICCPCT] 978-1-4799-7074-2/15/$31.00 ©2015 IEEE.

[10] Ross Thompson and James E. Stine, “An IEEE 754 Double-Precision Floating-Point
Multiplier for Denormalized and Normalized Floating-Point Numbers”, International
conference on IEEE 2015.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

4753

[11] M. K. Jaiswal and R. C. C. Cheung, “High Performance FPGA Implementation of
Double Precision Floating Point Adder/Subtractor”, in International Journal of Hybrid
Information Technology, vol. 4, no. 4, (2011) October.

[12] B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating Point
Arithmetic," IEEE Transactions on VLS1, vol. 2, no. 3, pp. 365-367, 1994.

[13] N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom Computing Machines," Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM"95), pp.155-162,
1995.

[14] Malik and S. -B. Ko, “A Study on the Floating-Point Adder in FPGAs”, in Canadian
Conference on Electrical and Computer Engineering (CCECE-06), (2006) May, pp.
86–89.

[15] D. Sangwan and M. K. Yadav, “Design and Implementation of Adder/Subtractor and
Multiplication Units for Floating-Point Arithmetic”, in International Journal of
Electronics Engineering, (2010), pp. 197-203.

[16] L. Louca, T. A. Cook and W. H. Johnson, “Implementation of IEEE Single Precision
Floating Point Addition and Multiplication on FPGAs”, Proceedings of 83rd IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM‟96), (1996), pp. 107–
116.

[17] Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs", Proc. of
IEEE ICASSP, vol. 2, (2001), pp. 897-900.

[18] Lee and N. Burgess, “Parameterisable Floating-point Operations on FPGA”,
Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems, and
Computers, (2002).

[19] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient Implementation of Floating Point
Multiplier”, Saudi International Electronics, Communications and Photonics
Conference (SIECPC), (2011) April 24-26, pp. 1-5.

