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Abstract— In the present scenario, the rapid growth of wireless communication, multimedia 
applications, robotics and graphics increases the demand for resource efficient, high throughput 
and low power digital signal processing (DSP) systems. Floating point matrix multiplication is 
the most widely used fundamental processing element in almost all DSP systems ranging from 
audio/video signal processing to wireless sensor networks. Hardware implementation of 
Floating point matrix multiplication requires a huge number of arithmetic operations that affect 
the speed and consumes more area and power. Pipelining and parallel processing are the two 
methods used in the DSP systems to reduce the area. Matrix multiplication is the kernel 
operation used in many transform, image and discrete signal processing application. We 
develop new algorithms and new techniques for matrix multiplication on configurable devices. 
In this paper, we have proposed three designs for matrix-matrix multiplication. These design 
reduced hardware complexity, throughput rate and different input/output data format to match 
different application needs. The PPI-MO based matrix multiplication is design Xilinx software 
and simulated number of slice, look up table and delay.  
Keywords— IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating 
Point (DP FP), Matrix Multiplication 
 

1. Introduction 
The key mission of this paper is to provide the background material necessary to follow the 
kernel of this thesis. The wide dynamic range features of Floating point arithmetic system is a 
common choice for many scientific and signal processing computations [1]. These applications 
often aim at high performance floating point unit. Basic Linear operations, such as dot product, 
vector and matrix multiplication are necessary for wide spectrum of computer applications. 
Floating point matrix multiplication is a building block for many linear algebra kernels [2, 3]. 
Multiplication is a complex arithmetic operation which is reflected in its relatively high power 
dissipation, high signal propagation delay, and large area requirement. Hence an efficient 
multiplier design has become a significant part in VLSI system design. The overall 
performance of the processing system is determined by the performance of the multiplier. By 
using an efficient architecture for floating point matrix multiplication improves the 
computation complexity of the system. In this research work, efficient floating point multipliers 
are considered for performing matrix multiplication [4]. 
Floating point multiplication is considered as an abstruse subject though it is found everywhere 
in a processor. A computer numerical computing capability is characterized with the number 
of floating point operation per unit time (Mflop/s- Million of floating point operation per 
second) [5]. Day by day processor is getting more complex in terms of design and its 
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performance analysis. In modern electronic systems, a multiplier is a fundamental arithmetic 
unit and it is extensively used in circuits, for which the multiplication process should be 
optimized properly. Floating point number system is a common choice for several scientific 
computations due to its wide dynamic range feature. The word floating point means that, there 
is no fixed number of digits before and after the decimal point; the decimal point can float. In 
computation, floating point is the standard representation that approximates a real number so 
as to support a trade-off between range and precision [6, 7]. 
Based on IEEE-754 standard, floating point formats are classified into binary and decimal 
interchange formats. Floating point multipliers are very important in dsp applications. This 
paper focuses on double precision normalized binary interchange format. Figure 1 shows the 
IEEE-754 double precision binary format representation. Sign (s) is represented with one bit, 
exponent (e) and fraction (m or mantissa) are represented with eleven and fifty two bits 
respectively. For a number is said to be a normalized number, it must consist of'one' in the 
MSB of the significand and exponent is greater than zero and smaller than 1023. The real 
number is represented by equations (i) & (2). 
 

                                                                             ).1(2)1( )( MZ BiasEs                  (1) 

 

                                                  ).1(2)1( )1023( MantissaValue Exponentsignbit         (2) 

 
Biasing makes the values of exponents within an unsigned range suitable for high speed 
comparison. 
 

 

 
 
 
IEEE 754 STANDARD FLOATING POINT MULTIPLICATION ALGORITHM 
A brief overview of floating point multiplication has been explained below [5-6]. 

1. Both sign bits S1, S2 are need to be Xoring together, then the result will be sign bit of 
the final product. 

2. Both the exponent bits E1, E2 are added together, and then subtract bias value from it. 
So, we get exponent field of the final product. 

 

Sign Bit                                           Significand Biased Exponent         
Si 

1-bit                   8/11-bit                           23/52-bit 

Fig. 1: IEEE 754 Single Precision and Double Precision Floating 
Point Format 
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II. MATRIX MULTIPLICATION 
The basic tool of linear algebra is matrix multiplication. In all computational applications of 
linear algebra matrix product computation is a central operation. Matrix multiplication is a key 
computation for several Engineering applications and scientific computing. To the 
performance of such applications, a fast and efficient implementation of matrix application is 
critical. Implementation of high performance matrix multiplication can be used to measure the 
potential performance of the target device [8]. 
Implementations of high performance level 3 BLAS operations are required in many complex 
algorithms in digital signal processing, image and video processing applications. Based on the 
computational applications and performance of the system, many algorithms have been 
designed for matrix multiplication. There has been wide work for matrix multiplication on 
parallel algorithms. Two classical algorithms are designed in which, each processor holds 
consecutive blocks of data based on a square processor grid with a block data distribution. The 
blocks on one processor are either broad cast to the other processor or transferred to its adjacent 
processors in the same row throughout the iteration. It developed Parallel universal matrix 
multiplication algorithm (PUMMA) which provides two-dimensional block cyclic data 
decomposition for Foxes algorithm. Distribution–Independent Matrix Multiplication 
Algorithm combines pipeline communication and LCM block concept to achieve the maximum 
performance. The Scalable Universal Matrix Multiplication Algorithm (SUMMA) for 
distributed memory concurrent computers. The blocks are broadcast based on flexible 
broadcast- multiply- roll algorithm; the computation and communication on the processor are 
overlapped. They parallelized a sequential algorithm on a linear array of processors, which 
supports massive volume of data transfer on a pipeline optical bus. The proposed rank-1 update 
algorithm, here sub block of matrices are obtained by multiplying two panels of matrices and 
handle arbitrary sizes matrices. The Strassen algorithm named after Volker Strassen was used 
in linear algebra which requires fewer multiplications of matrix elements than the classic matrix 
multiplication method. It is faster than the standard matrix multiplication algorithms. Strassen 
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algorithm is a divide and conquer algorithm which partitions the matrix into sub matrices of 
equal size and employ a divide and conquer strategy on each sub matrices. For a 2×2 matrix 
multiplication, conventional algorithm requires 8 multiplication operations whereas Strassen’s 
require only 7 multiplication operations and 18 addition or subtractions. The complexity of 
Strassen algorithm is O(n2) but for classic algorithm the complexity is O(n3). Systolic array is 
a homogeneous network of tightly coupled data processing units (DPUs) which rhythmically 
compute a partial result by maintaining a regular flow of data in the network. The DPU process 
the data received from its upstream neighbours, store the result within itself and passes it down 
stream. The data stream entering and leaving the DPU are generated by Auto Sequencing 
Memory Unit (ASM) which include a data counter. DPUs are connected to the neighbour cell 
in a mesh -like topology and each DPU perform a sequence of processes on the data that flows 
between them [11, 12]. 
 

III. PROPOSED METHODOLOGY 

Proposed Parallel-Parallel Input and Multi Output(PPI-MO) 
In this design, we opted for faster operating speed by increasing the number of multipliers and 
registers performing the matrix multiplication operation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From equation 2 we have derived for parallel computation of 3 × 3 matrix-matrix multiplication 
and the structure is shown in figure 3. 

For an n×n matrix – matrix multiplication, the operation is performed using 2n number of 

multipliers, 2n  number of registers and nn 2  number of adders. The registers are used to 

store the partial product results. Each of the 2n  number of multipliers has one input from matrix 
B and the other input is obtained from a particular element of matrix A.  

b31 

b32 
b33 
 

b21 

b22 
b23 
 

b11 

b12 
b13 
 

a11 a21 a31 

a12 a22 a32 

a13 a23 a33 

c33 c32 c31 c23 c22 c21 c13 c12 c11 

Adder  Adder  Adder  

Fig. 3: Proposed PPI – MO Design for n = 3 
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The dataflow for matrix B is in row major order and is fed simultaneously to the particular row 

of multipliers such that the thi  row of matrix B is simultaneously input to the thi  row of 
multipliers, where 1 < i < n . The elements of matrix are input to the multipliers such that, 

thij ),(  element of matrix A is input to  

The thji ),( multiplier, where1 < i,j < n. The resultant products from each column of multipliers 

are then added to give the elements of output matrix C. In one cycle, n elements of matrix C 
are calculated, so the entire matrix the elements of matrix C are obtained in column major order 
with n elements multiplication operation requires n cycles to complete. 
Let us consider the example of a 3×3 matrix – matrix multiplication operation, for a better 
analysis of the design (as shown in figure 1). The hardware complexities involved for this 
design are 9 multipliers, 9 registers and 6 adders. Elements from the first row of matrix B (b11 
b12 b13) are input simultaneously to the first row of multipliers (M11 M12 M13) in 3 cycles. 
Similarly, elements from other two rows of matrix B are input to the rest two rows of 

multipliers. A single element from matrix A is input to each of the multipliers such that,  thij ),(  

element of matrix A is input to the multiplier Mij, where 1 < i,j < 3. The resultant partial 
products from each column of multipliers (M1k M2k M3k where 1 < k 3) are added up in the 
adder to output the elements of matrix C. In each cycle, one column of elements from matrix 
C is obtained (C1k C2k C3k where1 < k < 3) and so the entire matrix multiplication operation is 
completed in 3 cycles. 
 
IEEE 754 Floating Point 
In IEEE754 standard floating point  representation, 8 bit Exponent  field in single precision 
floating point (SP FP) representation and 11 bit in double precision floating point (DP FP) 
representation  are need to add with another 8 bit exponent and 11 bit exponent respectively, 
in order to multiply floating point numbers represented in IEEE 754 standard as explained 
earlier. Ragini et al. [10] has used parallel adder for adding exponent bits in floating point 
multiplication algorithm. We proposed the use of 8-bit modified CSA with dual RCA and 8-
bit modified CSA with RCA and BEC for adding the exponent bits. We have found the 
improved area of 8-bit modified Carry select adder with RCA and BEC over the 8-bit modified 
CSA with dual RCA.  
 
- Sign bit calculation 
To calculate the sign bit of the resultant product for SP FP and DP FP multiplier, the same 
strategy will work. We just need to XOR together the sign bits of both the operands. If the 
resultant bit is ‘1’, then the final product will be a negative number. If the resultant bit is ‘0’, 
then the final product will be a positive number. 
 
- Exponent bit calculation 
Add the exponent bits of both the operands together, and then the bias value (127 for SPFP and 
1023 for DPFP) is subtracted from the result of addition. This result may not be the exponent 
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bits of the final product. After the significand multiplication, normalization has to be done for 
it. According to the normalized value, exponents need to be adjusted. The adjusted exponent 
will be the exponent bits of the final product.  
 
- Significand bit calculation 
Significand bits including the one hidden bit are need to be multiply, but the problem is the 
length of the operands. Number of bits of the operand will become 24 bits in case of SP FP 
representation and it will be 53 bits in case of DP FP representation, which will result the 48 
bits and 106 bits product value respectively. In this paper we use the technique of break up the 
operands into different groups then multiply them. We get many product terms, add them 
together carefully by shifting them according to which part of one operand is multiplied by 
which part of the other operand. We have decomposed the significand bits of both the operands 
ain four groups. Multiply each group of one operand by each group of second operand. We get 
16 product terms. Then we add all of them together very carefully by shifting the term to the 
left according to which groups of the operands are involved in the product term. 
 

IV. Simulation Result 
All the designing and experiment regarding algorithm that we have mentioned in this paper is 
being developed on Xilinx 14.2i updated version. Xilinx 6.2i has couple of the striking features 
such as low memory requirement, fast debugging, and low cost. The latest release of ISETM 

(Integrated Software Environment) design tool provides the low memory requirement 
approximate 27 percentage low. ISE 14.2i that provides advanced tools like smart compile 
technology with better usage of their computing hardware provides faster timing closure and 
higher quality of results for a better time to designing solution. 
For parallel in multiple out shift registers, all data bits appear on the parallel input immediately 
following the simultaneous entry of the date bits. Four-bit parallel in multiple out shift register 
is constructed by four D flip-flops. 
In fig. 4 and fig. 5 have shown the resistor transistor logic (RTL) using 3×3 PPI-MO matrix 
multiplication and output waveform of 3×3 PPI-MO matrix multiplication respectively. 
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Fig. 4: View Technology Schematic of 3×3 Matrix Multiplications using PPI-MO 
 

 
Fig. 5: View Technology Schematic of 3×3 Matrix Multiplications using PPI-MO 
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Fig. 6: View Technology Schematic of 4×4 Matrix Multiplications using PPI-MO 
 

 
Fig. 7: View Technology Schematic of 4×4 Matrix Multiplications using PPI-MO 
 
Table I: Comparison Result 
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Table 2: Simulation result for 3×3 and 4×4 Matrix Multiplication 

Structure Dimension Slice LUTs IOBs Delay 
(ns) 

MM 
using 
PPI-SO 

 
3×3 

44 15 34 11.222 

MM 
using 
PPI-MO 

93 154 74 15.058 

MM 
using 
PFI-MO 

34 55 38 9.128 

Previous 
Design 
[1] 

 
 
4×4 

311 212 - 16.513 

MM 
using 
PPI-SO 

49 88 42 13.771 

MM 
using 
PPI-MO 

221 388 74 15.058 

MM 
using 
PFI-MO 

39 72 48 11.543 

 
V. Conclusion 
The floating point matrix multiplication for rank-1 update algorithm is designed using Urdhva 
Tiryagbhyam multiplier based on pipeline processing. This proposed arithmetic level reduction 
technique achieves area efficient matrix multiplication with reduced delay. The efficiency of 
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the proposed method is experimented using Xilinx 14.2i simulating tool. The block matrix 
multiplication architecture is designed using Strassen matrix multiplication algorithm and 
Urdhva Tiryagbhyam multiplier based on parallel processing. The Strassen algorithm using 
divide and conquer method divides the matrix into 4×4 matrix and applies PPI_MO which 
follows vertical and cross multiplications. By proper scheduling and reuse of available 
resources the proposed algorithm increases the performance. 
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