CHECKING THE BEAMS FOR STRENGTH IN LONGITUDINAL BENDING BY PLOTTING THE GEOMETRIC SIZE OF THE CROSS SECTION

Dekhkonov Ulugbek
Associate Professor Namangan Engineering-Construction Institute znaniyasila7@yandex.ru

Najmiddinov Insomiddin

Namangan Engineering-Construction Institute, Senior Lecturer at the Department of Strength of Materials and Mechanics. inajmiddinov@gmail.com

Isaboev Sharofiddin

Namangan Engineering-Construction Institute, Senior Lecturer of the Department "Strength of Materials and Mechanics" shisaboyev@umail.uz

Azamov Kodirjon
Namangan Engineering-Construction Institute, Associate Professor of the Department of Strength of Materials and Mechanics, senior lecturer.
qazamov@umail.uz

Annotation: the article gave rise to the equation of choice of its cross-section by constructing an epuyur for a geometric dimension with the selection of a plot in which the maximum full voltage of the cross-section of the balka working on the bend is formed. These issues are known to have previously been identified by constructing cutting force and bending moment epures.
Keywords: Shear force, bending moment, diagrams, tangential stresses, normal stresses, geometric dimensions, equations.

The testing of beams for bending strength has been extensively studied in the discipline of strength of materials. The solution of the problem is based on the construction of diagrams of shear force Q and bending moment M . A diagram built taking into account the dimensions of the cross section of the beam using these methods can simplify the problem for some time. When finding this equation, the methods of mathematics and strength of materials were used. It is known that the test for the strength of various materials during bending of beams is carried out using the formula for rectangular cross sections [1], [2],:

$$
\begin{equation*}
\sigma=\frac{M}{W} \leq[\sigma](a) \quad \tau=\frac{Q \cdot S}{b \cdot J} \leq[\tau] \tag{1}
\end{equation*}
$$

where M is the bending moment, W is the moment of resistance, Q is the shear force, S_{x} is the static moment of the allocated cross-sectional area, b is the width of the rectangle, J is the moment of inertia of the cross-sectional area.

Figure 1 shows stress graphs constructed according to equations (1). The maximum value of the tangential stress reaches the line of the neutral axis, and the maximum values of the normal stress at the end of the cross section [3], [4].

Fig. 1
As is known, the maximum value of the cross-sectional tension is between the neutral and extreme points, since tangential and normal stresses are applied at these points simultaneously. Based on these considerations, we rewrite equation (1) as follows, taking into account the allowable stress and geometric dimensions:

$$
\begin{equation*}
\sigma=\frac{M_{\text {max. }}}{J_{x}} \cdot y \leq[\sigma](a) \quad \tau=\frac{Q_{\text {max. }} \cdot \frac{b}{2} \cdot\left(\frac{b^{2}}{4}-y^{2}\right)}{b \cdot J_{x}} \leq[\tau] \quad(b) \tag{2}
\end{equation*}
$$

or by transforming the equation,

$$
\begin{equation*}
p=\sqrt{\left(\frac{M}{J_{x}} \cdot y\right)^{2}+\left(\frac{Q}{2 \cdot J_{x}} \cdot\left(\frac{b^{2}}{4}-y^{2}\right)\right)^{2}} \tag{3}
\end{equation*}
$$

To determine the maximum value of the total voltage p , we take the values $\mathrm{M}=1$ and $\mathrm{Q}=1$ i.e. equal to one, while taking into account that the moment of inertia are equal,

$$
\begin{equation*}
J_{x}=\frac{b \cdot h^{3}}{12}(a) \quad b=\frac{h}{k}(b) \tag{4}
\end{equation*}
$$

If $\mathrm{k}=1$ then the section of a rectangular quadrilateral turns into a square.
Transforming equation (3), taking into account expressions (4), we get

$$
\begin{equation*}
p=\sqrt{\frac{36 \cdot k^{2}}{h^{8}} \cdot y^{4}+\frac{144 \cdot k^{2}}{h^{8}} \cdot y^{2}-\frac{18}{h^{6}} \cdot y^{2}+\frac{9}{4 \cdot h^{8} \cdot k^{2}}} \tag{5}
\end{equation*}
$$

If we accept that, $h=1$, then its value means relative to h

$$
\begin{equation*}
p=\sqrt{36 \cdot k^{2} \cdot y^{4}+\left(144 \cdot k^{2}-18\right) \cdot y^{2}+\frac{9}{4 \cdot k^{2}}} \tag{6}
\end{equation*}
$$

noting,

$$
\begin{gather*}
A=36 \cdot k^{2} \cdot \quad B=144 \cdot k^{2}-18 \quad C=\frac{9}{4 \cdot k^{2}} \tag{7}\\
p=\sqrt{A \cdot y^{4}+B \cdot y^{2}+C}
\end{gather*}
$$

As a result, we get:

$$
\begin{equation*}
\dot{P}=\frac{4 \cdot A \cdot y^{3}+2 \cdot B \cdot y+C}{2 \sqrt{A \cdot y^{4}+B \cdot y^{2}+C}}=0 \tag{9}
\end{equation*}
$$

Solving equations (9) we find the extreme points of the function, we construct its graph.
And we find that, for $y=y_{0}, p=p_{\max }$.
Then equations (2) take the following form:

$$
\begin{array}{ll}
\sigma=\frac{M_{\max .}}{J_{x}} \cdot y_{0} \leq[\sigma](a) & \tau=\frac{Q_{\max } \cdot\left(\frac{b^{2}}{4}-y_{0}\right)}{2 \cdot J_{x}} \leq[\tau] \\
\text { где } \quad J_{x}=\frac{b \cdot h^{3}}{12}(a) & k=\frac{h}{b} \quad(b)
\end{array}
$$

Taking into account (11), we write equations (10) as follows,

$$
\begin{equation*}
h^{4}=\frac{12 \cdot k \cdot M \cdot y_{0}}{[\sigma]}(a) \quad h^{4}-\frac{3 \cdot Q}{2 \cdot[\tau] \cdot k} \cdot h^{2}+\frac{6 \cdot k \cdot Q \cdot y_{0}^{2}}{[\tau]}=0 \tag{b}
\end{equation*}
$$

From equation (12 b) we find h , for this we accept the following notation:

$$
\begin{equation*}
A=1 \quad h^{4}=E^{2} \quad B=-\frac{3 \cdot Q}{2 \cdot[\tau] \cdot k} \quad C=\frac{6 \cdot k \cdot Q \cdot y_{0}^{2}}{[\tau]} \tag{13}
\end{equation*}
$$

then we get the equation: $\mathrm{E}^{2}+\mathrm{B} \cdot \mathrm{E}+\mathrm{C}=0$
then, $E=\frac{-B \pm \sqrt{B^{2}-4 \cdot A \cdot C}}{2}=\frac{\frac{3 \cdot Q}{2 \cdot[\tau] \cdot k} \pm \sqrt{\frac{9 \cdot Q^{2}}{4 \cdot[\tau]^{2} \cdot k^{2}}-\frac{24 \cdot k \cdot Q \cdot y_{1}{ }^{2}}{[\tau]}}}{2}$
Knowing that $h=\sqrt{E}$ we get the following expression

$$
\begin{equation*}
h=\sqrt{\frac{\frac{3 \cdot Q}{2 \cdot[\tau] \cdot k} \pm \sqrt{\frac{9 \cdot Q^{2}}{4 \cdot[\tau]^{2} \cdot k^{2}}-\frac{24 \cdot k \cdot Q \cdot y_{1}^{2}}{[\tau]}}}{2}} \tag{15}
\end{equation*}
$$

Multiplying the equations (12 a) and (15) the right and left parts, respectively, we have the following equations:

$$
\begin{equation*}
h=\sqrt[5]{\left(\sqrt{\frac{\frac{3 \cdot Q}{\frac{2 \cdot[\tau] \cdot k}{} \pm \sqrt{\frac{9 \cdot Q^{2}}{4 \cdot[\tau]^{2} \cdot k^{2}}-\frac{24 \cdot k \cdot Q \cdot y_{1}{ }^{2}}{[\tau]}}}}{2}}\right) \cdot \frac{12 \cdot k \cdot M \cdot y_{1}}{[\sigma]}} \tag{16}
\end{equation*}
$$

Equation (16) is a solution to a problem in which you can find the size of the cross section of a rectangular quadrilateral or square, while it takes into account the most stressed y_{0} ordinate from the neutral axis of the cross section using the auxiliary equation (9). M and Q , since they are a function of the $O x$ axis, will give us their directly proportional value of h where it has the most maximum value. This shows that we do not need to choose the value of external forces, (16) the equation itself chooses which coordinate $O x$ corresponds to the maximum value of h.

REFERENCES:

1. А.Ф. Смирнов. Сопротивление материалов. -М.: Наука, 1986. -396с..
2. А.В. Дарков, Г.С. Шапиро. Сопротивление материалов. Учебник для ВТУЗов. М.: Высшая школа, 1975. -654 с.
3. В.И. Феодосьев. Сопротивление материалов. -М.: Наука, 1986. -196с.
4. James M. Gere. Mechanics of materials. Brooks/coole. 2015. p. 926.
5. Ulugbek D, Yodgorjon T. "Rotors Of Wind Aggregates and Their Construction Problems"//International Journal of Progressive Sciences and Technologies- (IJPSAT), 27(1), pp. 148-154, Vol. 27 No. 1 Junio 2021,. http://ijpsat.ijsht.journals.orgЭ ISSN: 2509-0119.
6. Gafurovich DU. "Analysis of the soulit and rezults of the defferentiolofequatio of wind agregate motion". Design Engineering journal, 2021. December, pp 5618 -5627.https://www.design-enjineering=56185627.
7. Gafurovich D. U., Sotivoldievich Z. M. "The use of non-conventional power sources is a requirement of the period"//Academicia Globe: Inderscience Research. - 2021. - T. 2. - №. 07. - C. 121-126. ttps://doi.org/10.17605/OSF.IO/NXR3T.
8. Dekhkonov Ulugbek, Tillaboev Yodgor, Urishov Utkirbek, Azamov Kodirjon. "Determining the optimal angular velocity of a vertical axis rotor wind unit". Jundishapur Journal of Microbiology Research Article Published online 2022 April Vol. 15, No. 1 (2022) 3298. https://www.jjmicrobiol.com/index.php/jjm/article/view/492.
9. Дехқонов У.Ғ, Нажмиддинов И.Б, Уришев У.Г. "Ротор ишчи қанотларини аниқлаш". Journal of Advanced Research and Stability. 2022, 199 б. ISSN: 2181-2608. www. sciencebox.uz/.
10. Дехқонов У.Ғ, Исабоев Ш.М. Уришев У.Г. "Ротор моментининг характеристикаси". Journal of Advanced Research and Stability. 2022, 205 б. ISSN: 21812608. www. sciencebox.uz.
11. Дехқонов У.Ғ, Исабоев Ш.М., Абдужабборов А.А. "Шамол агрегати фойдали қаршилик моментининг зарурий қиймати". Journal of Advanced Research and Stability. 2022, 205 б. ISSN: 2181-2608. www. sciencebox.uz.
12. Тиллабоев Ё.Т. Последовательности точек в m-мерном Евклидовом пространстве. SCIENCE AND EDUCATION SCIENTIFIC JOURNAL. VOLUME 3, ISSUE 2 FEBRUARY 2022. стр. 28-39.
13. Dehkanov U.G, Makhmudov Z.S, Azamov Q.S. General Equation of the Moment of a Concave Wing. Web of Scholars: Multidimensional Research Journal (MRJ), Volume: 01 Issue: 062022 ISNN: (2751-7543), 70-74. http://innosci.org/index.php/wos/ article/view/300. 14. Dehkanov U. G., Makhmudov Z. S., Azamov Q.S. Practical Equation of Torque for a Concave Wing Rotor Drive. Web of Scholars: Multidimensional Research Journal (MRJ) Volume: 01 Issue: 06.2022 ISNN: (2751-7543), 230-234, http://innosci.org/ index.php/wos/article/view/336.
14. Tillaboev Y., Daminov J. A., Najmiddinov I. The Effect of the Number of Rotor Plates on the Vertical Axis on the Value of the Moment of Inertia// Design Engineering, 2021, ISSUE 09. Pages:5504-5509.
15. Daminov J.A., Tillaboev Y., Agzamov K.S., Isaboev S.M., Abdujabborov A.A. The Mechanism of Experimental Determination of the Angular Velocity of the Working Shaft of the Wind Unit// Design Engineering, 2021, том 9. Pages:11814-11821.
16. Tillaboev Y.K. Domino Interactive In Theoretical Mechanics Lectures Apply The Method// Innovative Technologica: Methodical Research Journal. 2021, Vol 2, № 07, p.43-48. 18. Тиллабоев Е.К. О преподовании непрерывности функции многих переменных с помощью интерактивных методов // Science and Education, scientific journal, 3:3 (2022), c. 1053-1062.
