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Abstract 

Stochastic models are essential for organizing manpower resources. In this study, a 
stochastic model with a non-stationary recruiting process is developed and examined. Here, a 
shock process defines the time-dependent recruitment. The Weighted Exponential Distribution 
is one of the special situations for particular parameter values in the shock process. 
Additionally, it is presumable that the process of getting promoted or terminated follows a 
weighted exponential distribution. We calculate the anticipated time to employee recruitment 
in the organization using the renewal process and the survival function. The model analysis 
indicates that the shock process in recruiting greatly affects the traits of manpower 
organization.  
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Introduction 

The main goal of recruitment is to find "the number of minimum-cost and quality personnel 
necessary to satisfy the organization's human resource demands"1. Recruitment entails seeking 
out and obtaining qualified candidates for open positions in sufficient numbers and quality so 
that the business can choose the best candidates to fill open positions2. According to Osoian 
and Zaharie (2014)3, identifying recruitment sources is an essential first step for any business. 
However, there is no one source that is always the best or most appropriate because it depends 
on the organization's needs, the characteristics of the positions, the size, reputation, and budget 
of the business, as well as the availability of labor. 
Mallikharjuna Rao et al. (2015) designed and studied a manpower model under the assumption 
that the recruitment process is nonhomogeneous compound Poisson, with mean recruitment 
rate 𝜆(𝑡) = 𝑎 + 𝑏𝑡, i.e., recruitment rate is linearly dependent on time, and inter recruitment 
times are distributed exponentially. However, a detailed examination of the recruitment 
methods reveals that the recruitment rates may be rising, falling, or stable. The Duane process, 
in which the inter-recruitment times follow, is a good way to describe the time-varying 
recruitment rates following weibull distribution4.  
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A staffing strategy, according to Heneman and Judge (2008), is the interaction of an 
organization's Human resource strategy with important decisions pertaining to the recruitment 
and growth of its employees, such as decisions on recruitment, selection, and employment 
programs5. According to Ravichandran (2011), an organization must be set up such that it may 
best meet its strategic objectives, functional demands, and environmental constraints as they 
relate to providing the required services. Additionally, if the company wants to get a 
competitive edge, this is vital6.  
 
WEIGHTED EXPONENTIAL DISTRIBUTION (WED) 

Gupta and Kundu (2009)7  to create a new class of WED using Azzalini (1985)8 idea, 
and its definition is as follows: The following probability density function (pdf) indicates that 
a random variable 𝑋 should have a WED with the shape and scale parameters. 

𝑓(𝑥, 𝜆, 𝛼) =  
𝛼 + 1

𝛼
 𝜆 𝑒( ) 1 − 𝑒( )                               𝑥 > 0,       𝜆, 𝛼

> 0                       … (1) 

A random variable X tracks Weighted Exponential (α, λ) if it has the pdf (1). For all 
values of, the PDF of the WED is unimodal and displays an increasing hazard function It is 
feasible to use the hazard function to represent lifetime information that takes stress and 
strain into account as a result of the hazard function's continuing expansion. The corresponding 
distribution function of X is  

𝐹(℘, 𝜆, 𝛼) = 1 +
1

𝛼
𝑒{ ( )℘}

−
𝛼 + 1

𝛼
𝑒( ℘)                                                                               … (2) 

The WED has a variety of significant characterisitcs8, despite not belonging to this 
family of distributions, the weighted exponential class can be used to create the limiting 
distribution, which is the exponential distribution. Recent literature9,10,11,12 showed the 
adaptability and simplicity of the model.   

MODEL DESCRIPTION AND SOLUTION 

𝐻(℘) =
𝛼 + 1

𝛼
𝑒( ℘)

−
1

𝛼
𝑒{ ( )℘}                                                                                                … (3) 

𝑃(℘ < 𝑌) = 𝑔 (℘)𝐻(℘)𝑑𝑥                                                                                                        
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                    =  𝑔 (℘)
𝛼 + 1

𝛼
𝑒( ℘) −

1

𝛼
𝑒{ ( )℘} 𝑑℘                                                    

              =  𝑔 (℘)
𝛼 + 1

𝛼
𝑒( ℘) 𝑑℘ − 𝑔 (℘)

1

𝛼
𝑒{ ( )℘} 𝑑℘                      

                               

=  
𝛼 + 1

𝛼
𝑔∗ (𝜆)

−
1

𝛼
𝑔  

∗ 𝜆(𝛼 + 1)                                                                           … (4) 

𝑃(𝑇 > 𝑡) =  𝑉 (𝑡)𝑃(℘

< 𝑌)                                                                                                                    

The number of decisions made in (0, 𝑡] from a renewal process 𝑉 (𝑡)[𝐹 (𝑡) − 𝐹 (𝑡)] 

       = [𝐹 (𝑡) − 𝐹 (𝑡)]
𝛼 + 1

𝛼
𝑔∗ (𝜆) −

1

𝛼
𝑔  

∗ 𝜆(𝛼 + 1)                                                          

             =
𝛼 + 1

𝛼
[𝐹 (𝑡) − 𝐹 (𝑡)]𝑔∗ (𝜆)

−
1

𝛼
[𝐹 (𝑡) − 𝐹 (𝑡)]𝑔∗ [𝜆(𝛼 + 1)]                       

 =
𝛼 + 1

𝛼
[𝐹 (𝑡) − 𝐹 (𝑡)][𝑔∗(𝜆)]

−
1

𝛼
[𝐹 (𝑡) − 𝐹 (𝑡)]{𝑔∗[𝜆(𝛼 + 1)]}              … (5)  

Taking Laplace transformation 𝐿(𝑡)we get, 

 𝐿(𝑡) = 1 −
𝛼 + 1

𝛼
[𝐹 (𝑡) − 𝐹 (𝑡)][𝑔∗(𝜆)] +

1

𝛼
[𝐹 (𝑡) − 𝐹 (𝑡)]{𝑔∗[𝜆(𝛼 + 1)]}  

On simplification we get  
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𝐿(𝑡) = 1 −
𝛼 + 1

𝛼
+

𝛼 + 1

𝛼
[1 − 𝑔∗(𝜆)]𝑓∗(𝑠) {𝑔∗(𝜆)𝑓∗(𝑠)} +

1

𝛼

−  
1

𝛼
[1

− 𝑔∗(𝜆)(𝛼 + 1)]𝑓∗(𝑠) {𝑔∗(𝜆)(𝛼 + 1)𝑓∗(𝑠)}                                           

          =
𝛼 + 1

𝛼
[1 − 𝑔∗(𝜆)]𝑓∗(𝑠) {𝑔∗(𝜆)𝑓∗(𝑠)}

−
1

𝛼
[1

− 𝑔∗(𝜆)(𝛼 + 1)]𝑓∗(𝑠) {𝑔∗(𝜆)(𝛼 + 1)𝑓∗(𝑠)}                               … (6) 

Laplace-Stieltjes transform can be used to demonstrate that 

𝑙∗(𝑠) =  
𝛼 + 1

𝛼

[1 − 𝑔∗(𝜆)]𝑓∗(𝑠)

[1 − 𝑔∗(𝜆)]𝑓∗(𝑠)

−
1

𝛼

[1 − 𝑔∗(𝜆)(𝛼 + 1)]𝑓∗(𝑠)

[1 − 𝑔∗(𝜆)(𝛼 + 1)]𝑓∗(𝑠)
                                                              

The random variable representing the inter-arrival time should be exponential.  

Now 𝑓∗(𝑠) = , by substituting in the following equation we get equation (7). 

=
𝛼 + 1

𝛼

[1 − 𝑔∗(𝜆)]
𝑐

𝑐 + 𝑠

1 − 𝑔∗(𝜆)
𝑐

𝑐 + 𝑠

 −
1

𝛼

[1 − 𝑔∗(𝜆)(𝛼 + 1)]
𝑐

𝑐 + 𝑠

1 − 𝑔∗(𝜆)(𝛼 + 1)
𝑐

𝑐 + 𝑠

                                                          

          =
𝛼 + 1

𝛼

[1 − 𝑔∗(𝜆)]𝑐

[𝑐 + 𝑠 − 𝑔∗(𝜆)𝑐]

−
1

𝛼

[1 − 𝑔∗(𝜆)(𝛼 + 1)]𝑐

[𝑐 + 𝑠 − 𝑔∗(𝜆)(𝛼 + 1)𝑐]
                                                     … (7) 

𝐸(𝑇) =  − 𝑙∗(𝑠) 𝐺𝑖𝑣𝑒𝑛 𝑠 = 0       𝐸(𝑇) =
 [ ∗( )]

 −  
 [ ∗( )( )]

   

𝑔∗(𝜆) =  
𝜇

𝜇 + 𝜆
  ,              𝑔∗(𝜆)(𝛼 + 1) =

𝜇

𝜇 + 𝜆(𝛼 + 1)
 

=
𝛼 + 1

𝛼𝑐 1 −
𝜇

𝜇 + 𝜆

 −  
1

𝛼𝑐 1 −
𝜇

𝜇 + 𝜆(𝛼 + 1)
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On simplification we get the expected time  

𝐸(𝑇) =  
1

𝑐

(𝛼 + 1)(𝜇 + 𝜆) 

𝛼𝜆

−
(𝛼 + 1)(𝜇 + 𝜆)

𝛼𝜆 (𝛼 + 1)
                                                                          … (8) 

Results 
Table 1. Expected recruitment at different stages   

c 𝛼 = 0.3, 𝜇

= 0.5, 𝜆 = 0.1 
𝛼 = 0.5, 𝜇

= 0.8, 𝜆 = 0.1 
𝛼 = 0.7, 𝜇

= 0.9, 𝜆 = 0.1 
1 6 9 10 
2 3 4.5 5 
3 2 3 3.333 
4 1.5 2.25 2.5 
5 1.2 1.8 2 
6 1 1.5 1.667 
7 0.857 1.286 1.429 
8 0.75 1.125 1.25 
9 0.667 1 1.111 
10 0.6 0.9 1 
20 0.3 0.45 0.5 
30 0.2 0.3 0.333 
50 0.12 0.18 0.2 
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Figure 1. Observed expected recruitment at different stages   

Discussion 

As in the table 1, inter-arrival time increases at different period and different stage of 
recruitment is observed. In all the three stages of the parametric (𝛼, 𝜇 𝑎𝑛𝑑 𝜆 ) change and fix, 
i.e.,   
𝛼 = 0.3, 𝜇 = 0.5, 𝜆 = 0.1, 𝛼 = 0.5, 𝜇 = 0.8, 𝜆 = 0.1 and 𝛼 = 0.7, 𝜇 = 0.9, 𝜆 = 0.1, we 
observed the recruitment time to decrease as the inter-arrival time increases. This result of 
WED is found similar in the study13 where the authors used three-parameter generalized 
Rayleigh distribution. Another study14 where the threshold level is a random variable following 
generalized exponentiated gamma distribution for recruitment in organization.     

Keeping in mind that measures for inclusion and equal employment opportunity are interwoven 
into the recruitment process. It is important to plan ahead for staffing demands so that properly 
qualified candidates may be found and trained. 
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