A COMMON FIXED POINT THEOREM IN I-GENERALIZED METRIC SPACES

Sunny Kumar ${ }^{\text {a,1* }}$, Ayaz Ahmad ${ }^{\text {b,1 }}$
${ }^{1}$ Department of Mathematics, National Institute of Technology, Patna (India)
${ }^{\text {as }}$ sunnyk.phd19.ma@nitp.ac.in, ${ }^{\text {b }}$ ayaz@nitp.ac.in

Abstract

Here in, a common fixed point theorem of two self-mapping in the frame of generalized metric space under more generalized ($\psi-\phi$)-weakly condition of contraction is presented, and then, an analogous version of this common fixed point theorem is presented in the frame of Igeneralized metric space.

2020 Mathematics Subject Classification: 47H10; 54H25
Keywords: $(\psi-\phi)$-weakly contraction, fixed point, rectangular metric space, coincidence point, common fixed point.

1. Introduction

In 1986, G. Jungck [6] proved common fixed point theorem under the concept of compatible self- mapping in metric spaces.
In 1997, Alber and Delabrier [1] introduced the concept of φ-weak contraction under which the existence of fixed points for self-mapping of Hilbert spaces has been proved.
Definition of a φ-weak contraction is "A mapping $T: X \rightarrow X$ is called a φ-weak contraction if there exists a continuous and non-decreasing function $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\phi(t)=0$ iff $t=0$ for which, for all $x, y \in X, d(T(x), T(y)) \leq d(x, y)-\varphi d(x, y)$ ".
In fact, Banach contraction appears to be a special case of weak contraction by taking $\varphi(t)=$ $(1-\alpha) t$ for $0 \leq \alpha<1$.
In 2001, Rhoades [9] proved the result of Alber and Delabrieer in complete metric spaces.
In 2008 Dutta and Choudhury [5] introduced the concept of $(\psi-\phi)$-contraction and proved the fixed point result of self-mapping in metric spaces stated as "Let (X, d) be a complete metric space and
$T: X \rightarrow X$ satisfy $\psi(d(T(x), T(y))) \leq \psi(d(x, y))-\varphi(d(x, y))$ for all $x, y \in X$, where $\psi, \varphi:[0, \infty) \rightarrow$ $[0, \infty)$ are continuous non-decreasing functions such that $\psi(t)=0=\varphi(t)$ iff $t=0$. Then T has a unique fixed point". Taking $\psi(t)=t(t \geq 0)$, we get the φ-weak contraction. Taking $\psi(t)=t(t \geq 0)$ and $\varphi(t)=(1-\alpha) t$ with $0<\alpha<1$, we get Banach contraction.
In 2009, Doric [4] proved common fixed point result of two self-mapping under ($\psi-\phi$)contraction stated as "Let (X, d) be a complete metric space and $T, f: X \rightarrow X$ satisfy
$\psi(d(T(x), \quad f(y))) \leq \psi(M(x, \quad y))-\varphi(\quad M(x, \quad y))$ for all $\quad x, y \in X$, where $\quad M(x, y)=$ $\max \left\{d(x, y), d(x, T(x)), d(y, f(y)), \frac{1}{2}(d(x, f(y))+d(y, T(x)))\right\}$, and
(i) $\psi:[0, \infty) \rightarrow[0, \infty)$ is continuous non-decreasing such that $\psi(t)=0$ iff $t=0$,
(ii) $\varphi:[0, \infty) \rightarrow[0, \infty)$ is lower semi-continuous such that $\varphi(t)=0$ iff $t=0$.

Then T and f have a unique fixed point in X.
In 2000 Branciari [3] introduced metric space, called generalized metric space, which is a generalization of traditional metric space replacing triangular inequality by rectangular
inequality and thereafter many fixed point theorems and common fixed point theorems have been proved in this frame.

In [10], I-generalized metric space has been introduced, which is a kind of generalization of generalized metric space, and some fixed point results under several contractions in the context of
I-generalized metric spaces have been proved.
In [2] existence of unique common fixed point of two self- mapping of rectangular metric spaces under $(\psi-\phi)$-weakly contractive condition has been established, stated as "Let (X, d) be a Housdorff rectangular metric space, $S, T: X \rightarrow X$ such that $S(X) \subset T(X)$ and $(T(X), d)$ is a complete rectangular metric space, and satisfy $\psi(d(S(x), S(y))) \leq \psi(M(T(x), T(y)))-$ $\phi(M(T(x), T(y)))$ for all $x, y \in X$, and ψ, ϕ are continuous with $\psi(t)=0$ iff $t=0, \phi(t)=$ 0 iff $t=0$ and ψ is non-decreasing, and $M(T(x), T(y))=$ $\max \{d(T(x), T(y)), d(T(x), S(x)), d(T(y), S(y))\}$. Then S, T have a unique coincidence point in X. Moreover, if S and T are weakly compatible, then S, T have a unique common fixed point".
Here we are weakening the ($\psi-\phi$)-weakly contraction of [2] and establish new common fixed point result of two self-mapping of g.m.s., and then prove the analogous version of this result in the I-g. m. s.

2. Preliminaries

First we remind some notation and definitions that will be utilized in our subsequent discussion.

Definition (2.1) [I-uniqueness or I-equality]: [10] Let X be a non-empty set and $f: X \rightarrow X$ be an idempotent map. Two elements x and y in X are said to be I-unique with respect to f, if $f(x)=f(y)$; otherwise x and y are said to be I-distinct points in X.
Definition (2.2)[I-generalized metric space]: [10] Let X be a non-empty set, $f: X \rightarrow X$ be an idempotent map, i.e., $f^{2}=f$. A map $d: X^{2} \rightarrow[0, \infty)$ is said to be an I-generalized metric (Ig.m.s., in short) on X iff
$I_{I}: \forall x, y \in X, d(x, f(y))=0$ iff $f(x)=f(y)$ and $d(f(x), y)=0$ iff $f(x)=f(y)$.
$I_{2}: d(x, f(y))=d(y, f(x))$ and $d(f(x), y)=d(f(y), x), \forall x, y \in X$.
I_{3} : for all $x, y \in X$ and for all I-distinct points $u, v \in X$ each of which I-distinct from x and y, $d(x, y) \leq d(f(x), u)+d(f(u), v)+d(v, f(y))$.
The order triple (X, d, f) is called an I-generalized metric space. Elements of X are said to be points in X.
Example (2.3): (i) Every I-metric space is clearly a I-g.m.s.
(ii) Every generalized metric space (X, d) is clearly a I-g-m-s. with respect to the identity map on X.
(iii) Let $X=A \cup B$, where $A=\{0,2\}, B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Let $f: X \rightarrow X$ be an idempotent mapping. Define $d: X^{2} \rightarrow[0, \infty)$ by
$d(x, y)=\left\{\begin{array}{l}0, \text { if } f(x)=f(y) \\ 1, \text { if } f(x) \neq f(y),\{f(x), f(y)\} \subseteq A \text { or }\{f(x), f(y)\} \subseteq B \\ f(y), \text { if } f(x) \in A, f(y) \in B \\ f(x), \text { if } f(x) \in B, f(y) \in A\end{array}\right.$
Then (X, d, f) is an I-g.m.s.
Definition (2.4) [Convergence of a sequence:] [10] A sequence $\left\{x_{n}\right\}$ in an I-g.m.s. (X, d, f) is said to I-converge to a point $x \in X$, if for any $\varepsilon>0, \exists m \in \mathbb{N}$ such that $d\left(f\left(x_{n}\right), x\right)<\varepsilon, \forall n \geq$ m. In this case x is called I-limit of $\left\{x_{n}\right\}$.
A sequence which is not I-convergent in an I-g.m.s. (X, d, f), is called a non-I-convergent or an I-divergent sequence.
Definition (2.5) [Cauchy sequence]:[10] A sequence $\left\{x_{n}\right\}$ in an I-g.m.s. (X, d, f) is said to be an I-cauchy sequence in X if for any $\varepsilon>0, \exists n_{o} \in \mathbb{N}$ such that $d\left(f\left(x_{m}\right), x_{n}\right)<\varepsilon, \forall m, n \geq n_{o}$, i.e., $d\left(f\left(x_{n+p}\right), x_{n}\right)<\varepsilon, \forall n \geq n_{o}, \forall p \geq 1$.

Definition (2.6) [Complete I-g.m. s.]: [10] An I-g.m.s. (X, d, f) is said to be I-complete if every I-cauchy sequence in $X \mathrm{I}$-converges to some point of X;otherwise (X, d, f) is called I-incomplete.
Definition (2.7)[I-fixed point]: [10] Let X be a non-empty set and $f: X \rightarrow X$ is an idempotent map. A map $h: X \rightarrow X$ is said to have an I-fixed point $x(\in X)$ if $(f h)(x)=f(x)$.
Theorem (2.8): [10] Let (X, d, f) be an I-g.m.s. Then
(i) $d(x, x)=0, \forall x \in X$, i.e., $\forall x, y \in X, x=y \Rightarrow d(x, y)=0$.
(ii) $\quad d(x, f(y))=d(f(x), y)=d(f(x), f(y))=d(f(y), f(x)) \geq d(x, y), d(y, x), \forall x, y \in$ X.
(iii) $d(x, f(x))=0, \forall x \in X$.

Proof: Trivial.
Definition (2.9)[Coincidence point]: Let X be a non-empty set and $S, T: X \rightarrow X$. A point $x \in$ X is called a coincidence point of S and T if $S(x)=T(x)$ and if $S(x)=T(x)=w$, then w is called a point of coincidence of S and T.
Also S and T are said to be weakly compatible if $(S T)(x)=(T S)(x)$ whenever $S(x)=T(x)$.

3. Main Results

Theorem (3.1) Let (X, d) be a g.m.s. and $S, T: X \rightarrow X$ such that $(X) \subset T(X)$. Let $(T(X), d)$ be a complete g.m.s.
Let $\psi(d(S(x), S(y))) \leq \psi(M(T(x), T(x)))-\phi(M(T(x), T(y))), \forall x, y \in X$
Where ψ, ϕ are continuous with $\psi(t)=0$ iff $t=0, \phi(t)=0$ iff $t=0$ and ψ is nondecreasing, \quad and $\quad M(T(x), T(y))=$ $\max \{d(T(x), T(y)), d(T(x), S(x)), d(T(y), S(y)), d(T(y), S(x)), d(S(x), S(y))\}$. Then S, T have a unique point of coincidence in X. Moreover, if S and T are weakly compatible, then S, T have a unique common fixed point.

Proof: Let u and v be points of coincidence of S and T in X. then there exists x , y in X , Such that $\mathrm{S}(x)=\mathrm{T}(x)=u$ and $\mathrm{S}(y)=\mathrm{T}(y)=v$
Now from (1) we get,

$$
\begin{align*}
\psi(d(u, v))= & \psi(d(s(x), S(y))) \tag{3}\\
& \leq \psi(M(T(x), T(y)))-\phi(M(T(x), T(y))) .
\end{align*}
$$

where

$$
M(T(x), T(y))=\max \cdot M(d(u, v), d(u, u), d(v, v), d(v, u), d(u, v)=d(u, v))
$$

Therefore (3) becomes
$\psi(d(u, v)) \leq \psi(d(u, v)-\phi(d(u, v))<\psi(d(u, v))<\psi(d(u, v)$ ifd $(u, v)>0$
which is not possible. therefore $d(u, v)=0$. Therefore $u=v$.
Therefore, If S and T have one point of coincidence, there it is unique.
Let u be the point of coincidenoc of S and T.then there exists $x \in X$. Such that $S(x)=T(x)=$ u (4)

Since S and T are weakly compatible, we have $(S T)(x)=(T S)(x)$
$\Rightarrow S(u)=T(u)=u$ (say)
Since S and T have unique point of coincidence, from (4) and (5) we have $u=v$
Therefore $\mathrm{S}(u)=u=T(u)$
So that u is a common fixed point of S and T. Let w be any common fixed point of S and T.
Then $S(w)=w=T(w)$
$\Rightarrow w$ is a point of coincidence of S and T. Since S and T have a unique point of concidence, from (6) and (7) we have $u=w$. Therefore S and T have unique common fixed point. If S and T have a common fixed point. Then it is unique.
Let $x_{0} \in X$ be arbitrary since $S(x) \mathrm{CT}(x)$. Define two scquences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in X as follows:

$$
y_{0}=S\left(x_{0}\right)=T\left(x_{1}\right)\left(\text { Since } j_{0}=S\left(x_{0}\right) C S(x) \subset T(x)\right)
$$

There exist $x_{1} \in X$ such that $\left.S\left(x_{0}\right)=T\left(x_{1}\right)\right)$

$$
y_{1}=S\left(x_{1}\right)=T\left(x_{2}\right)
$$

Therefore, $\forall n \in N \cup\{0\}, y_{n}=S\left(x_{n}\right)=T\left(x_{n+1}\right)$
If $y_{\mathrm{n}}=y_{n-1}$ for some $n \in N$, Then $y_{n-1}=S\left(x_{n-1}\right)$
$\Rightarrow T\left(x_{n}\right)=y_{n}=S\left(x_{n}\right)$ So that y_{n-1} is the coincidence point of S and T.
Let $y_{0} \neq y_{n-1}, \forall n \in N$
If $y_{n}=S\left(x_{n}\right)=S\left(x_{n+1}\right)=\left(y_{n+1}\right)$ for some $n \geq 0, p \geq 2$ then

$$
y_{n}=S\left(x_{n}\right)=T\left(x_{n+1}\right)=S\left(x_{n+p}\right)=T\left(x_{n+p+1}\right)=y_{n+p}
$$

So that, at time of construction of the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, we choose $x_{n+p+1}=x_{n+1}, \forall n \geq$ 0 In this case, from (1) we get,

$$
\begin{align*}
& \psi\left(d\left(y_{n}, y_{n+1}\right)\right)=\psi\left(d\left(s\left(x_{n}\right), S\left(x_{n+1}\right)\right)\right) \\
\leq & \psi\left(M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)=\phi\left(M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)\right)\right. \tag{8}
\end{align*}
$$

Where $\quad M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)=\operatorname{Max}\left\{d\left(y_{n-1}, y_{n}\right), d\left(y_{n-1}, y_{n}\right), d\left(y_{n}, y_{n+1}\right), d\left(y_{3}\right)=\right.\right.$ $\operatorname{Max}\left\{d\left(y_{n+1}, y_{n}\right), d\left(y_{n}, y_{n+1}\right)\right\}$

If $M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)=d\left(y_{n}, y_{n+1}\right)$, Then from (8)
We have $\psi\left(d\left(y_{n}, y_{n+1}\right)\right) \leq \psi\left(d\left(y_{n}, y_{n+1}\right), \psi\left(d\left(y_{n}, y_{n+1}\right)\right) \leq \psi\left(d\left(y_{n}, y_{n+1}\right)\right)-\right.$ $\left.\psi\left(d\left(y_{n}, y_{m+1}\right)\right)\right)$
$\Rightarrow \phi\left(d\left(y_{n}, y_{n+1}\right)=0 \Rightarrow d\left(y_{n}, y_{n+1}\right)=0\right.$
$\Rightarrow y_{n}=y_{n+1}$ which is not true.
Therefore (8) becomes,

$$
\begin{align*}
& \psi\left(d\left(y_{n}, y_{n+1}\right)\right) \leq \psi\left(d\left(y_{n-1}, y_{n}\right)\right)-\phi\left(d\left(y_{n-1}, y_{n}\right)\right) \leq \psi\left(d\left(y_{n-1}, y_{n}\right)\right) \\
\Rightarrow \quad & d\left(y_{n}, y_{n+1}\right) \leq d\left(y_{n-1}, y_{n}\right), \forall n \in N(\text { since } \psi \text { is non }- \text { decreasing }) \tag{9}
\end{align*}
$$

Therefore $\left\{d\left(y_{n}, y_{n+1}\right)\right\}$ is a decreasing sequence of non-negative sequence of real numbers so that it wis converges to some real number $r(\geq 0)$. Let $r>0$

Since ϕ, ψ are continuous, from (9) we get

$$
\begin{align*}
& \psi(r) \leq \psi(r)-\phi(r)<\psi(r) \text { since } r>0 \Rightarrow \phi(r)<0 \text { a contradiction. Therefore } \mathrm{r}=0 \text { therefore } \\
& \lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0 \tag{10}
\end{align*}
$$

Now from (1) we get,

$$
\begin{align*}
& \Psi\left(d\left(y_{n}, y_{n+1}\right)\right)=\psi\left(d\left(s\left(x_{n}\right)\right), S\left(x_{n+2}\right)\right. \\
\leq \quad & \psi\left(M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)-\phi\left(M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)\right)\right. \tag{11}
\end{align*}
$$

Therefore $\left\{d\left(y_{n}, y_{n+1}\right)\right\}$ is a decreasing sequence of non-negative real number so that it converges to some real number $r(\geq 0)$. Let $r>0$.

Since ψ, ϕ are continuous, from (8) we get $\psi(r) \leq \psi(r)-\phi(r)<\psi(r)$
(Since $>0 \Rightarrow \phi(r)>0)$ a contradiction. Therefore $r=0$ Therefore

$$
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0
$$

Now from (1) we get,

$$
\begin{aligned}
& \Psi\left(d\left(y_{n}, y_{n+1}\right)\right)=\psi\left(d S\left(x_{n}\right) S\left(x_{n+1}\right)\right) \\
\leq & \psi\left(M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)-\phi\left(M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)\right.\right.
\end{aligned}
$$

where $M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)=\max \left\{d\left(y_{n+1}, y_{n-1}\right)\right\}, d\left(y_{n-1}, y_{n}\right), d\left(y_{n+1}, y_{n+2}\right)$,

$$
\begin{aligned}
\left.d\left(y_{n+1}, y_{n}\right), d\left(y_{n}, y_{n+2}\right)\right\} \\
\Rightarrow \max \left\{d\left(y_{n+1}, y_{n+1}\right), d\left(y_{n-1}, y_{n}\right), d\left(y_{n}, y_{n+1}\right)\right\},
\end{aligned}
$$

$$
\left[\text { Since } d\left(y_{n+1}, y_{n+2}\right) \leq d\left(y_{n}, y_{n+1}\right) \leq d\left(y_{n-1}, y_{n}\right)\right]
$$

Let $M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)=d\left(y_{n-1}, y_{n+1}\right)$ Then (11) becomes
$\psi\left(d\left(y_{n-1}, y_{n}\right)\right)=\psi\left(d\left(y_{n-1}, y_{n+1}\right)\right)-\phi\left(d\left(y_{n-1}, y_{n+1}\right) \quad \leq \psi\left(d\left(y_{n-1}, y_{n+1}\right)\right)\right.$
$\Rightarrow d\left(y_{n}, y_{n+2}\right) \leq d\left(y_{n-1}, y_{n+1}\right), \forall n \in N$ in that $\left\{d\left(y_{n}, y_{n+2}\right)\right\}$ is a decreasing sequence of non-negative real numbers and hence it connerges to some real number $r(\geq 0)$

$$
\text { If } y_{n}=S\left(x_{n}\right)=T\left(x_{n+1}\right)=S\left(x_{n+p}\right)=T\left(x_{n+p+1}\right)
$$

So that, at the time of construction of the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, we choose

$$
\begin{aligned}
& x_{n+p+1}=x_{n+1}, \forall n \geq 0 . \text { in this case from (1), we get, } \\
& \psi\left(d\left(y_{n}, y_{n+1}\right)\right)=\psi\left(d\left(S\left(x_{n}\right), S\left(x_{n+1}\right)\right)\right) \\
& \leq \psi\left(M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)\right)-\phi\left(M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)\right)
\end{aligned}
$$

Where $M\left(T\left(x_{n}\right)\right), T\left(x_{n+1}\right)=\max \left\{d\left(y_{n+1}, y_{n}\right), d\left(y_{n-1}, y_{n}\right), d\left(y_{n}, y_{n+1}\right), d\left(y_{n}, y_{n+1}\right)\right\}$

$$
=\mathrm{m}\left\{d\left(y_{n-1}, y_{n}\right), d\left(y_{n}, y_{n+1}\right)\right\}
$$

$$
\text { If } M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)=d\left(y_{n}, y_{n+1}\right) \text {, then from (7) we get, }
$$

$$
\psi\left(d\left(y_{n}, y_{n+1}\right) \leq \psi\left(d\left(y_{n}, y_{n+1}\right)\right)\right)-\psi\left(d\left(y_{n}, y_{n+1}\right)\right)
$$

$$
\Rightarrow \phi\left(d\left(y_{n}, y_{n+1}\right)\right)=0 \Rightarrow d\left(y_{n}, y_{n+1}\right)=0
$$

$$
\Rightarrow y_{n}=y_{n+1} \text { which is not the case. }
$$

Therefore $M\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)=d\left(y_{n+1}, y_{n}\right)$
Therefore (8) becomes, $\psi\left(d\left(y_{n}, y_{n+1}\right)\right) \leq \psi\left(d\left(y_{n-1}, y_{n}\right)-\phi\left(d\left(y_{n-1}, y_{n}\right)\right)\right.$ $\leq \psi\left(d\left(y_{n-1}, y_{n}\right)\right)$
$\Rightarrow d\left(y_{n}, y_{n+1}\right) \leq d\left(y_{n-1}, y_{n}\right), \forall n \in N$ (Since, ψ is non-decreasing).
Where $M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)$

$$
\begin{aligned}
= & \max .\left\{d\left(y_{n-1}, y_{n+1}\right), d\left(y_{n-1}, y_{n}\right), d\left(y_{n+1}, y_{n+2}\right), d\left(y_{n+1}, y_{n}\right), d\left(y_{n}, y_{n+2}\right)\right\} \\
= & \max .\left\{d\left(y_{n-1}, y_{n+1}\right), d\left(y_{n-1}, y_{n}\right), d\left(y_{n}, y_{n+2}\right)\right\} \\
& \left\{\text { since } d\left(y_{n+1}, y_{n+2}\right) \leq d\left(y_{n}, y_{n+1}\right) \leq d\left(y_{n-1}, y_{n}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)=d\left(y_{n-1}, y_{n+1}\right) \text { Then (10) becomes } \\
& \begin{aligned}
& \psi\left(d\left(y_{n}, y_{n+2}\right)\right) \quad \leq \psi\left(d\left(y_{n-1}, y_{n+1}\right)\right)-\phi\left(d\left(y_{n}, y_{n+1}\right)\right) \\
& \leq \psi\left(d\left(y_{n-1}, y_{n+1}\right)\right)
\end{aligned}
\end{aligned}
$$

$\Rightarrow d\left(y_{n}, y_{n+1}\right) \leq d\left(y_{n-1}, y_{n+1}\right), \forall n \in N$ in that $\left[d\left(y_{n}, y_{n+2}\right)\right]$ is a decreasing sequence of Non-negative real numbers and hence it converges to some real number and hence it converges to some real number $r(\geq 0)$

Let $r>0$ Now by continuing of ϕ, ψ from (12) we get

$$
\psi(r)=\psi(r)-\phi(r) \leq \psi(r)(\text { Since } r>0 \Rightarrow 0(r)>0 \text { a contradiction. }
$$

Therefore $r=0$ therefore $\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+2}\right)=0$ in this case

Let $M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)=d\left(y_{n-1}, y_{n}\right)$, then (12) becomes.
$\psi\left(d\left(y_{n}, y_{n+2}\right)\right) \leq \psi\left(d\left(y_{n-1}, y_{n}\right)\right)-\phi\left(d\left(y_{n-1}, y_{n}\right)\right)$.
Let $\left.\psi\left(T\left(x_{n}\right)\right), T\left(x_{n+1}\right)\right)=d\left(y_{n-1}, y_{n}\right)$ Then (12) becomes

$$
\psi\left(d\left(y_{n}, y_{n+2}\right) \leq \psi\left(d\left(y_{n-1}, y_{n}\right)\right)-\phi\left(d\left(y_{n-1}, y_{n}\right)\right)\right.
$$

$$
\Rightarrow 0 \leq \lim _{n \rightarrow \infty} \psi\left(d\left(y_{n}, y_{n+2}\right)\right) \leq \psi(0)-\phi(0)=0
$$

(by (10), continuity of ϕ, ψ and since $\phi(0)=0=\psi(0)$)

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} \psi\left(d\left(y_{n}, y_{n+2}\right)\right)=0, \text { in this case } \\
& \Rightarrow \psi\left(\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+2}\right)\right)=0(\text { by property of } \psi)
\end{aligned}
$$

Let $M\left(T\left(x_{n}\right), T\left(x_{n+2}\right)\right)=d\left(y_{n}, y_{n+2}\right)$. Then (11) becomes
$\psi\left(d\left(y_{n}, y_{n+2}\right)\right) \leq \psi\left(d\left(y_{n}, y_{n+2}\right)\right)-\phi\left(\left(y_{n}, y_{n+2}\right)\right)$
$\Rightarrow \phi\left(d\left(y_{n}, y_{n-2}\right)\right)=0 \Rightarrow d\left(y_{n}, y_{n+2}\right)=0($ by property of $\phi)$
$\Rightarrow y_{n}=y_{n+2}$ which is not case.
Therefore in any admissible case, we have
$\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+2}\right)=0$
Let $\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+p}\right) \leq d\left(y_{n}, y_{n+p-1}\right)+d\left(y_{n+p-1}, y_{n+p}\right)+d\left(y_{n+p}, y_{n+p+1}\right) \rightarrow 0$
by (13) and (10) Therefore
$\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+p+1}\right)=0$. Therefore by mathematical induction,
$\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+p}\right)=0$ for any integer $p \geq 1$. Therefore $\left\{y_{n}\right\}$ is cauchy in X.
Now for all $n \in N \cup\{0\}, y_{n}=S\left(x_{n}\right)=T\left(x_{n+1}\right) \in T(X)$
Therefore $\left\{y_{n}\right\}$ is couchy in $\{T(x), d\}$, So that $\left\{y_{n}\right\}$ converges to some point $u \in T(x)$.
Now $u \in T(x) \Rightarrow u=T(v)$ for some $v \in X M\left(T\left(x_{n}\right)\right), T(U)$

$$
\lim _{n \rightarrow \infty} M\left(T\left(x_{n}\right), T(v)\right)=\max .\{0,0, d(u, s(v), 0, d(u, s(v))\}=d(u, s(v))
$$

from (1) we get $\quad \psi\left(d\left(s\left(x_{n}\right), s(v)\right)\right) \leq \psi\left(M\left(T\left(x_{n}\right), T(v)\right)\right)-\phi\left(M\left(T\left(x_{n}\right), T(v)\right)\right.$

Where

$$
\begin{equation*}
M\left(T\left(x_{n}\right), T(v)\right)= \tag{15}
\end{equation*}
$$

$\max \left\{d\left(y_{n-1}, u\right), d\left(y_{n-1}, y_{n}\right), d(u, s(v)), d\left(u, y_{n}\right), d\left(y_{n}, s(v)\right)\right\}$
Now $d\left(y_{n}, s(v)\right) \leq d\left(y_{n}, y_{n-1}\right)+d\left(y_{n-1}, u\right)+d(u, s(v))$
$\leq d\left(y_{n-1}, y_{n}\right)+d\left(y_{n-1}, u\right)+d\left(u, y_{n-1}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, s(v)\right)$
$\Rightarrow \lim _{n \rightarrow \infty} d\left(y_{n}, s(v)\right) \leq 0+0+d(u, s(v)) \leq 0+0+0+0+\lim _{n \rightarrow \infty} d\left(y_{n}, s(v)\right)$
(by(10) and $\left.\lim _{n \rightarrow \infty} y_{n}=u\right)$
$\Rightarrow u=s(v) \Rightarrow T(v)=s(v)$
from (16) we get,
$\lim _{n \rightarrow \infty} M\left(T\left(x_{n}\right), T(v)\right)=\max .\{0,0, d(u, S(v), 0, d(u, S(v))\}=d(u, S(v))$
(by (10), (16)), Therefore from (14) we get
$\lim _{n \rightarrow \infty} \psi\left(d\left(y_{n}, S(v)\right) \leq \psi(d(u, S(v)))-\phi(d(u, S(v)) \ldots .(\right.$ by continuity of $\phi, \Psi)$
$\Rightarrow 0 \leq \psi(d(u, S(v)) \leq \psi(d(u, S(v))-\phi(d(u, S(v)) \quad$ (by continity of ψ and 16$))$
$\Rightarrow \phi(d(u, S(v))=0 \Rightarrow d(u, S(v))=0($ by property of $\phi) \Rightarrow u=S(v) \Rightarrow T(v)=S(v)$
Let $w=T(v)=S(u)$, then w is a point of coincidence of S and T and hence it is unique.(already proved)

Let S and T be weak compatible. Then we have already proved w is a unique. Common fixed point of S and T

Definition (3.2) Let $f, S, T: X \rightarrow X$, where X is a nonemply set and f is idempotent.
(a) A point $x \in X$ is called an I-coincidence point of S and T (with respect of) If $(f s)(x)$
$=(f T)(x)$ and if $(f s)(x)=(f T)(x)=w$ then w is called a point of I-coincidence of S and T.
(b) S and T are said to be weakly I-compatible. If $(f S f T)(x)=(f T f S)(x)$ whenever $(f S)(x)=(f T)(x)$

Theorem (3.3) Let (X, d, f) be an I-g.m.s. Let $S, T ; X \rightarrow X$ such that $S(X) \subset T(X)$.
Let $(T(x), d, f)$ is an I-complete I-g.m.s. provided $(f T)(x) \subset T(x)$.

Let

$$
\psi(d(f s)(x), s(y)) \leq \psi(M((f T)(x), T(y)))-\phi(M((f T)(x), T(y))), \forall x, y \in X
$$

(1)

$$
\begin{aligned}
& \text { where } \psi, \phi \in \psi \text { nondecreasing and } M((f T)(x), T(y)) \\
& =\max .\{d((f T)(x), T(y)), d((f T),(x), S(s)) \\
& d((f T)(y), S(y)), d((f T)(y), S(x)), d((f S)(x), S(y))\}
\end{aligned}
$$

Then S and T have an I-unique point of I-unique common I-fixed point.
Proof: Let u and v be points of I-coincidence of S and T. then there exists x, y in X Such that $(f S)(x)=(f T)(x)=u \quad$ and $\quad(f S)(y)=(f T)(y)=v$ (2)

Now from (1) we get,

$$
\begin{aligned}
& \psi(d(f(u), v))=(d(f(u), f(v))=\psi(d((f S)(x),(f S)(y)))(\text { by }(2)) \\
& =\psi(d(f S(x), S(y))) \leq \psi(M((f T)(x) \cdot T(y)))-\phi(M)((f T))(x), T(y)))
\end{aligned}
$$

(3)

Where

$$
M((f T)(x), T(y)))=
$$

$\max \{d(f(u), v), d(f(u), v), d(f(u), v), d(f(v), u), d(f(u, v))=d(f(u), v)$
Therefore (3) becomes

$$
\begin{aligned}
\psi(d(f(u), v)) \leq & \psi(d(f(u), v)-\phi(d(f(v), v)) \\
& <\psi(d(f(u), v)) \text { If } d(f(f(u), v)>0
\end{aligned}
$$

Which is not possible therefore $d(f(u), v)=0$
Therefore $f(u),=f(v)$. Therefore S and T have a point of I-coincidence then it is I-unique.
Let u be the I-unique point of I-coincidence of S and T. then there exists x in X such that
$(f S)(x)=(f T)(x)=u$
Since S and T are weakly I-compatible,

$$
\begin{align*}
& \text { We have }(f S f T)(x)=(f T f S)(x) \\
& \Rightarrow(f S)(u)=(f T)(u)=v \text { (say) } \tag{5}
\end{align*}
$$

Since S and T have I-unique point of I-coincidence then from (4) and (5), $f(u)=f(v)$
Therefore $(f S)(u)=f(u)=f(T)(u)$
As u is the common fixed point of S and T.

Let w be any common I-fixed point of S and T. Then $(f(x)(x)=f(w)=(f T)(w)$
Then $(f S)(w)=f(w)=(f T)(w)$
$f(w)$ is a point of I-coincidence of S and T.
S and T have I-unique point of coincidence,
Therefore S and T have a I-unique commen fixed point. Therefore, If S and T have a commen Lined point. Let $x_{0} \in X$ be arbitrary, since $S(x) \subset T(x)$ define two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in X as follows $y_{0}=S\left(x_{0}\right)=T\left(x_{1}\right)$ Since $y_{0}=S\left(x_{0}\right) \in S(x) \subset T(x)$, there exist $x, \in X$ such that $S\left(x_{0}\right)=T\left(x_{1}\right)$
$y_{1}=S\left(x_{1}\right)=T\left(x_{2}\right) \ldots$ and so on
Hence, $\forall n \in N \cup\{0\}, \forall_{n}=S\left(x_{n}\right)=T\left(x_{n+1}\right)$

$$
\begin{aligned}
& f\left(y_{n}\right)=f\left(y_{n-1}\right) \text { for some } n \in N \text {, then } \\
& f\left(y_{n-1}\right)=(f S)\left(x_{n-1}\right)=(f T)\left(x_{n}\right)=f\left(y_{n}\right)=(f S)\left(x_{n}\right)
\end{aligned}
$$

So that $f\left(y_{n-1}\right)$ is the I-unique point of coinidence of S and T, or x_{n} is the I-unique Icoincidence
point and T of S and T

$$
\begin{aligned}
& \text { Let } f\left(y_{n}\right) \neq f\left(y_{n-1}\right), \forall n \in N . \\
& \text { If } f\left(y_{0}\right)=(f S)\left(x_{n}\right)=(f S)\left(x_{n+p}\right)=f\left(y_{n+p}\right)
\end{aligned}
$$

for some $n \geq 0, p \geq 2$ then

$$
\begin{aligned}
f\left(y_{n}\right) & =(f S)\left(x_{n}\right)=(f T)\left(x_{n+1}\right)=(f S)\left(x_{n+p}\right)=(f T)\left(x_{n+u+1}\right) \\
& =f\left(y_{n+u}\right) \text { so that at the time of construction of the sequence }
\end{aligned}
$$

We choose $x_{n+p+1}=x_{n+1}, \forall n \geq 0$, in this case, from (1) we get

$$
\begin{align*}
\psi\left(d\left(f\left(y_{n}\right), y_{n+1}\right)\right) & =\psi\left(d\left((f S)\left(x_{n}\right), S\left(x_{n+1}\right)\right)\right) \\
& \leq \psi\left(M\left((f T)\left(x_{n}\right), T\left(x_{n+1}\right)\right)\right)-\varphi\left(M \left(\left(f T\left(x_{n}\right), T\left(x_{n+1}\right)\right)\right.\right. \tag{8}
\end{align*}
$$

Where $M\left((f T)\left(x_{n}\right), T\left(x_{n+1}\right)\right)$.

$$
\begin{gathered}
=\max .\left\{d\left(f\left(y_{n-1}\right), y_{n}\right), d\left(f\left(y_{n-1}\right), y_{n}\right), d\left(f\left(y_{n}\right), y_{n+1}\right),\right. \\
\left.d\left(f\left(y_{n}\right), y_{n}\right), d\left(f\left(y_{n}\right),\left(y_{n+1}\right)\right)\right\}
\end{gathered}
$$

If $M\left((f T)\left(x_{n}\right), T\left(x_{n+1}\right)=d\left(f\left(y_{n}\right), y_{n+1}\right)\right.$, then from (8) we get,

$$
\begin{aligned}
& \psi\left(d\left(f\left(y_{n}\right), y_{n+1}\right)\right) \leq \psi\left(d\left(f\left(y_{n}\right), y_{n+1}\right)\right)-\phi\left(d\left(f\left(y_{n}\right), y_{n+1}\right)\right) \\
\Rightarrow & \psi\left(d\left(f\left(y_{n}\right), y_{n+1}\right)\right)=0 \Rightarrow d\left(f\left(y_{n}\right), y_{n+1}\right)=0 \\
\Rightarrow & f\left(y_{n}\right)=f\left(y_{n+1}\right) \text { which is not the case. }
\end{aligned}
$$

Therefore $M\left((f T)\left(x_{n}\right), T\left(x_{n+1}\right)\right)=d\left(f\left(y_{n-1}\right), y_{n}\right)$
Therefore (8) becomes.

$$
\begin{array}{r}
\psi\left(d\left(f\left(y_{n}\right), y_{n+1}\right)\right) \leq \psi\left(d\left(y_{n-1}\right), y_{n}\right)-\phi\left(d\left(f\left(y_{n-1}\right), y_{n}\right)\right) \leq \psi\left(d\left(f\left(y_{n-1}\right), y_{n}\right)\right) \tag{9}\\
\Rightarrow d\left(f\left(y_{n}\right), y_{n+1}\right) \leq d\left(f\left(y_{n-1}\right), y_{n}\right), \forall n \in N(\text { since } \psi \text { is non decreasing. })
\end{array}
$$

Therefore $\left\{d\left(f\left(y_{n}\right), y_{n+1}\right)\right\}$ is a decreasing sequence of non-negative real number so that it comerges to some real number $r(\geq 0)$ a contradiction therefore $r=0$

Therefore $\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+1}\right)=0$
Now from (1) we get,

$$
\begin{align*}
& \psi\left(d\left(f\left(y_{n}\right), y_{n+2}\right)\right)=\psi\left(d(f S)\left(x_{n}\right), S\left(x_{n+2}\right)\right) \\
& \leq \psi\left(M\left((f T)\left(x_{n}\right), T\left(x_{n+2}\right)\right)\right)-\phi\left(M\left((f T)\left(x_{n}\right), T\left(x_{n+2}\right)\right)\right) \tag{11}
\end{align*}
$$

Where $M\left((f T)\left(x_{n}\right), T\left(x_{n+2}\right)\right)$

$$
\begin{gather*}
=\operatorname{max.}\left\{d\left(f\left(y_{n-1}\right), y_{n+1}\right), d\left(f\left(y_{n-1}\right), y_{n}\right)\right. \\
\left.d\left(f\left(y_{n+1}\right), y_{n+2}\right), d\left(f\left(y_{n+1}\right), y_{n}\right), d\left(f\left(y_{n}\right), y_{n+2}\right)\right\} \\
=\max .\left\{d\left(f\left(y_{n-1}\right), y_{n+1}\right), d\left(f\left(y_{n-1}\right) y_{n}\right), d\left(f\left(y_{n}\right), y_{n+2}\right)\right\} \\
\left(\operatorname{since} d\left(f\left(y_{n+1}\right), y_{n+2}\right) \leq d\left(f\left(y_{n}\right), y_{n+1}\right) \leq d\left(f\left(y_{n-1}, y_{n}\right)\right)\right. \\
\text { Let } M\left((f T)\left(x_{n}\right), T\left(x_{n+2}\right)\right)=d\left(f\left(y_{n-1}\right), y_{n+1}\right)-\phi\left(d\left(f\left(y_{n-1}\right), y_{n+1}\right)\right) \\
\leq \psi\left(d\left(f\left(y_{n-1}\right), y_{n+1}\right)\right) \\
\Rightarrow d\left(f\left(y_{n}\right), y_{n+2}\right) \leq d\left(f\left(y_{n-1}\right), y_{n+1}\right), \forall n \in N \tag{12}
\end{gather*}
$$

So that $\left\{d\left(f\left(y_{n}\right), y_{n \in 2}\right)\right\}$ is a decreasing sequence of nonege to some real number $r(\geq 0)$.
Let $r>0$ Now by continuity of ϕ, ψ, from (12) we get

$$
\begin{equation*}
\psi(r) \leq \psi(r)-\phi(r)<\psi(r)(\text { since }, r>0 \Rightarrow \phi(r)>0) \text { a contradiction therefore } r=0 \tag{13}
\end{equation*}
$$

$\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+2}\right)=0$ in this case. Let $\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+2}\right)=0$
Then (12) becomes,

$$
\begin{aligned}
& \psi\left(d\left(f\left(y_{n}\right) \cdot y_{n+2}\right)\right) \leq \psi\left(d\left(f\left(y_{n-1}\right), y_{n}\right)\right)-\phi\left(d\left(f\left(y_{n-1}\right), y_{n}\right)\right) \\
\Rightarrow \quad & 0 \leq \lim _{n \rightarrow \infty} \psi\left(d\left(f\left(y_{n}\right), y_{n+2}\right)\right) \leq \psi(0)-\phi(0)=0
\end{aligned}
$$

(by (10), continuity of ϕ, ψ and since $\phi(0)=0=\psi(0)$

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty}\left(d\left(f\left(y_{n}\right), y_{n+2}\right)\right)=0 \text { in this case } \\
& \left.\Rightarrow \psi \lim _{n \rightarrow \infty}\left(d\left(f\left(y_{n}\right), y_{n+2}\right)\right)=0 \text { (by continiuty of } \psi\right) \\
& \left.\Rightarrow \lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+2}\right)=0 \text { (by property of } \psi\right)
\end{aligned}
$$

Let $M\left((F t)\left(x_{n}\right), T\left(x_{n+2}\right)\right)=d\left(f\left(y_{n}\right), y_{n+2}\right)$
Then (10) becomes.

$$
\begin{aligned}
& \psi\left(d\left(f\left(y_{n}\right), y_{n+2}\right) \leq \psi\left(d\left(f\left(y_{n}\right), y_{n+2}\right)\right)-\phi\left(d\left(f\left(y_{0}\right), y_{n+1}\right)\right)\right. \\
\Rightarrow & \left(\phi \left(d\left(f\left(y_{n} \neq y_{n}(2)\right) f 0 T\right)(v)=(f S)(v) .\right.\right. \\
\Rightarrow & d\left(f\left(y_{n}\right), y_{n+2}\right)=0(\text { by property of } \phi) \\
\Rightarrow & f\left(y_{n}\right)=f\left(y_{n+2}\right) \text { which is not the case, }
\end{aligned}
$$

We have $\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+2}\right)=0$
Let $\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+p}\right)=0$, for any integer $p \geq 2$
Now $d\left(f\left(y_{n}\right), y_{n+p+1}\right) \leq d\left(f\left(y_{n}\right), y_{n+p-1}\right)+d\left(f\left(y_{n+p-1}, y_{n+p}\right)+d\left(f\left(y_{n+p}\right), y_{n+p+1}\right) \rightarrow\right.$ a as $n \rightarrow \infty$ (by (12), (10)), Therefore $\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+p+1}\right)=0$

Therefore, by mathematical induction.
$\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), y_{n+p}\right)=0$, for any integer $p \geq 1$
Therefore $\left\{y_{n}\right\}$ is I-cauchy in X . Now for $n \in N \cup\{0\}, y_{n}=\phi S\left(x_{n}\right)=T\left(x_{n+1}\right) \in T(x)$ Therefore $\left\{y_{n}\right\}$ is clearly I-Cauchy in $(T(x), d, f)$. So that $\left\{y_{n}\right\}$ I-converges to some point $u \in$ T
Now $u \in T(x) \Rightarrow u=T(v)$ for some $v \in X$
from (1) we get,

$$
\begin{array}{ll}
\left.\psi\left(d(f S)\left(x_{n}\right), S(v)\right)\right) \leq \psi(M((f T) & \left.\left.\left(x_{n}\right), T(v)\right)\right) \\
& \left.-\phi\left(M(f T)\left(x_{n}\right), T(v)\right)\right)
\end{array}
$$

Where $\quad M\left((f T)\left(x_{n}\right), T(v)\right)=$ $\max \left\{d\left(f\left(y_{n-1}\right), v\right), d\left(f\left(y_{n-1}\right), y_{n}\right) d(f(u), S(i)), d\left(f(u), y_{n}\right), d\left(f\left(y_{n}\right), S(u)\right)\right)$

Now $\left.d\left(f\left(y_{n}\right), S(u)\right) \leq d\left(f\left(y_{n}\right), y_{n-1}\right)+d\left(f\left(y_{n-1}\right), u\right)+d(f(u), s(v))\right\}$
$\leq d\left(f\left(y_{n-1}\right), y_{n}\right)+d\left(f\left(y_{n-1}, u\right)+d\left(f(u), y_{n-1}\right)+d\left(f\left(y_{n-1}\right), y_{n}\right)+d\left(f\left(y_{n}\right), S(v)\right)\right.$
$\left.\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), S(v)\right) \leq 0+0+d(f(u), S(v)) \leq 0+0+0+0+\lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), S(v)\right)\right)$
(by (10) and $\lim _{n \rightarrow \infty} y_{n}=u$)
$\left.\Rightarrow \lim _{n \rightarrow \infty} d\left(f\left(y_{n}\right), S(v)\right)\right)=d(f(u), S(v))$
from (14), we get

$$
\begin{aligned}
\left.\lim _{n \rightarrow \infty} M\left(f\left(x_{n}\right), T(v)\right)\right) & =\max \cdot\{0,0, d(f(u), S(v)), 0, d(f(u), S(v))\} \\
& =d(f(u), S(v))
\end{aligned}
$$

by (10), (13), Therefore from (13) we get,

$$
\lim _{n \rightarrow \infty} \psi\left(d\left(f\left(g_{n}\right), S(v)\right) \leq \psi(d(f(u), S(v))-\phi(d f(u), S 9 v))\right)
$$

(by continuity of ϕ, ψ)
$\Rightarrow 0 \leq \psi(d(f(u), S(v)) \leq \psi(d(f(u), S(v))-\phi(d(f(u), S(v)))$ (by property of $\phi)$

$$
\Rightarrow \quad f(u)=(f S)(v)
$$

$$
\Rightarrow \quad(f T)(v)=(f S)(u)
$$

Let $W=(f T)(v)=(f S)(v)$.
Then clearly $f(w)=(f T)(v)=(f S)(v)$.
Then w is a point of I-coincidence of S and T and hence it is I-unique (already proved). Let S and T be weak I-compatible. Then we have already proved that w is an I-unique common Ifixed point of S and T.

Conclusion:

Further study may be continued for generalization and extension of various contractive conditions and fixed point results.

References

[1] Alber Y. I. Guerre, Delabrieer S.; Principles of weakly contractive maps in Hilbert spaces. In:
Gohberg, I., Lyubich, Y. (eds.), New Results in Operator Theory, Advances and Appl, vol. 98, pp. 7-22. Birkhäuser, Basel (1997).
[2] Arshad M., Ahmad J., Karapinar E.; Some Common Fixed Point Results in Rectangular Metric
Spaces, Intern. J. Analysis, Article ID 307234. (2013).
[3] Branciari A.; A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric
spaces, Publ. Math. Debrecen, 57, 1-2 (2000), 31-37.
[4] Doric D.; Common fixed point for generalized (ψ, ϕ)-weak contractions. Appl. Math. Lett. 22,
1896-1900 (2009).
[5] Dutta P.N., Choudhury B.S.; A generalization of contraction principle in metric spaces. Fixed
Point Theory Appl., Article ID 406368 (2008)
[6] Jungck G.; Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986),

771-779.
[7] Jungck G. Rhoades B. E.; Fixed point theorems for occasionally weakly compatible mappings,
Fixed Point Theory 7 (2006), 286-296
[8] Raswan R. A. and Sadeek A. M.; A common fixed point theorem in complete metric spaces, Southwest journal of pure and applied mathematics, 01 (1996), 6-10.
[9] Rhoades B.E.; Some theorems on weakly contractive maps. Nonlinear Anal. TMA, 47(4), pp.
2683-2693 (2001).
[10] Suman S. and Biswas J.; I-generalized metric spaces and some fixed point theorems, Journal of The Gujarat Research Society, Vol-21, Issue-16 (2019), 3660-3672.
[11] Sunny K., Ahmad A., Pandey H. K.; A common Fixed point theorem for compatible map in 2-metric space, Design Engg.(Toronto), Issue 7, pp. 15868-879.
[12] Tiwari S. K. and Pandey H. K.; Rational type fixed point theorem in 2-metric space, South East Asian J. of Math. Maths. Sci. vol. 16, No. 3(2020), pp. 231-238.
[13] Tiwari S. K. and Pandey H. K.; Fixed point theorem in S-metric space, Pan-American Mathematical Journal, Vol. 31(2021), No. 1, pp. 19-28.

