Volume 25 Issue 04, 2022

ISSN: 1005-3026

https://dbdxxb.cn/

ROUGH SPHERICAL FUZZY BI-IDEAL IN NEAR RINGS

V.S.Subha¹,S.Lavanya², C.B.Aswini³

Assistant professor (deputed),PG and Research department of mathematics ,Govt Arts college C.Multur Chidambaram¹

Assistant professor,Department of mathematics,Bharathi womens college chennai² Department of mathematics ,Annamalai university,Annamalai nagar,608002³

ABSTRACT

This paper studies relationship between spherical fuzzy set, rough set and near ring. We define spherical fuzzy bi-ideal in near ring and pro-pose rough spherical fuzzy bi-ideal in near ring. Investigate some interesting properties of rough spherical fuzzy bi-ideal.

Keywords: Spherical fuzzy set, Spherical fuzzy bi-ideal, Near-ring, Rough set, rough fuzzy set, Rough spherical fuzzy bi-ideal.

1.INTRODUCTION

Fuzzy [14] sets have a great progress in every scientific research area. After the introduction of ordinary fuzzy sets, new extensions have appeared one by one in the literature. Among these extensions, picture fuzzy sets [2], neutrosophic sets [10] and spherical fuzzy sets [5] are the members of the same class since any element in these sets is represented by a membership degree, a non-membership degree and a hesitancy degree assigned by independently. Spherical fuzzy sets have been proposed by Gundogdu and Kahraman [5]. The notion of rough sets was introduced by Pawlak [9] in the year 1982. The algebraic approach of rough sets was studied by many researchers. The basic idea of rough set is based upon the approximation of sets by a pair of sets known as the lower approximation and the upper approximation of a set. The lower and upper approximation operators are based on equivalence relation. The rest of the paper is organized as follows: Section 2 is full of information about the basics . In Section 3, we introduced the spherical fuzzy bi-ideal in near ring and discussed some interesting properties. At last in section 4 we combine rough set and spherical fuzzy set. Also we define rough spherical fuzzy bi-ideal in near ring.

2.PRELIMINARIES

We review some definitions that will be useful in our results. Throughout this paper let us denote \aleph as near ring. Let Π be an equivalence relation on \aleph . A congruence relation Π on *S* is said to be complete if $[a]_{\Pi}[b]_{\Pi} = [ab]_{\Pi}$.

Let (\aleph, Π) be an approximation space. Let A be any nonempty subset of \aleph . The sets

 $\Pi^{-}(A) = \{ x \in \aleph/[x]_{\Pi} \subseteq A \} \text{ and }$

 $\Pi^{+}(A) = \{ x \in \aleph/[x] \Pi \cap A \neq \phi \}$

are called the lower and upper approximations of A. Then $\Pi(A) = (\Pi^{-}(A), \Pi^{+}(A))$ is called rough set in (S, Π) , iff $\Pi^{-}(A) \neq \Pi^{+}(A)$. A fuzzy subset of a nonempty set X is defined as a function $\beta : X \rightarrow [0, 1]$ Let Λ be a fuzzy subset of \aleph . The fuzzy subsets of \aleph defined by $\Pi^{+}(\Lambda)(x) = \bigvee_{a \in [x]_{\Pi}} \Lambda(a) \text{ and } \Pi^{-}(\Lambda)(x) = \bigwedge_{a \in [x]_{\Pi}} \Lambda(a)$

are called respectively, the Π -upper and Π -lower approximations of the fuzzy set Λ . Then $\Pi(\Lambda) = (\Pi^{-}(\Lambda), \Pi^{+}(\Lambda))$ is called a rough fuzzy set of Λ with respect to Π if $\Pi^{-}(\Lambda) \neq \Pi^{+}(\Lambda)$.

Definition 2.1. [1] An intuitionistic fuzzy set defined on \aleph is an object having the form $I = (\langle i, I_m(i), I_n(i) \rangle: i \in \aleph)$

of each element $i \in \aleph$ to the set *I* respectively, and satisfies

$$0 \le I_m + I_n \le 1.$$

Definition 2.2. [6] Let be \mathcal{E} the SF set of the universe of U is defined by $\mathcal{E} = \{l, \langle \mathcal{E}_m(l), \mathcal{E}_n(l), \mathcal{E}_h(l) \rangle\}$

Where $\mathcal{E}_m(l): U \to [0, 1], \mathcal{E}_n(l): U \to [0, 1], \mathcal{E}_h(l): U \to [0, 1]$ and $0 \le \mathcal{E}_m^2(l) + \mathcal{E}_n^2(l) + \mathcal{E}_h^2(l) \le 1$ for every $l \in U$

for each *l*, the numbers $\mathcal{E}_m(l)$, $\mathcal{E}_n(l)$ and $\mathcal{E}_h(l)$ are the degree of membership, non membership and hesitancy of *l* to \mathcal{E} , respectively.

Example 2.3. Let $\aleph = \{p, q, r, s\}$ be the universe. A SF set \mathcal{E} of \aleph is defined by $\mathcal{E}_m(i) = \{0.6, 0.4, 0.2, 0.4\}, \mathcal{E}_n(i) = \{0.6, 0.5, 0.3, 0.6\}$ and $\mathcal{E}_h(i) = \{0.3, 0.4, 0.5, 0.1\}$ where i = p, q, r, s.

3. SPHERICAL FUZZY BI-IDEAL (SFBI) IN NEAR RINGS

This section deals with notion of SFBI in near-ring \aleph . Also we prove the intersection of two SFBI is also a SFBI in near ring \aleph .

Definition 3.1. A SF set $\mathcal{E} = \langle \mathcal{E}_m(l), \mathcal{E}_n(l), \mathcal{E}_h(l) \rangle$ in \aleph is called a SFBI of \aleph if the resulting conditions are true:

```
(1)\mathcal{E}_{m} (i-j) \geq \mathcal{E}_{m} (i) \wedge \mathcal{E}_{m} (j)

\mathcal{E}_{n} (i-j) \geq \mathcal{E}_{n} (i) \wedge \mathcal{E}_{n} (j)

\mathcal{E}_{h} (i-j) \leq \mathcal{E}_{h} (i) \vee \mathcal{E}_{h} (j)

(2)\mathcal{E}_{m} (ijk) \geq \mathcal{E}_{m} (i) \wedge \mathcal{E}_{m} (k)

\mathcal{E}_{n} (ijk) \geq \mathcal{E}_{n} (i) \wedge \mathcal{E}_{n} (k)

\mathcal{E}_{h} (ijk) \leq \mathcal{E}_{h} (i) \vee \mathcal{E}_{h} (k) \text{ for all } i, j, k \in \mathbb{N}

Example 3.2 Let \mathbb{N} = (\pi 0, \pi 1, \pi 2, \pi 2) be a near ring
```

Example 3.2. Let $\aleph = \{z0, z1, z2, z3\}$ be a near-ring with the following multiplication table TABLE 1

+	<i>z</i> ₀	<i>z</i> ₁	<i>z</i> ₂	<i>Z</i> ₃
Z_0	<i>z</i> ₀	<i>z</i> ₁	<i>Z</i> ₂	<i>Z</i> ₃
Z_1	<i>z</i> ₁	<i>z</i> ₀	<i>Z</i> 3	<i>z</i> ₂
<i>z</i> ₂	<i>Z</i> ₂	<i>Z</i> ₃	<i>Z</i> ₁	<i>z</i> ₀
Z_3	Z_3	<i>z</i> ₂	Z_0	Z_1

TABLE 2

•	<i>z</i> ₀	<i>z</i> ₁	<i>Z</i> ₂	Z_3
<i>z</i> ₀				
Z_1	Z_0	Z_0	Z_0	Z_0

Z_2	<i>z</i> ₀	Z_0	Z_0	Z_0
Z_3	Z_0	Z_1	<i>Z</i> ₂	Z_3

Let \mathcal{E} be a SF set of \aleph defined by,

 $\begin{aligned} & \mathcal{E}_m \left(z_0 \right) = \mathcal{E}_m \left(z_1 \right) = \mathcal{E}_m \left(z_1 \right) = \mathcal{E}_m \left(z_2 \right) = 0.3 \\ & \mathcal{E}_n \left(z_0 \right) = \mathcal{E}_n \left(z_2 \right) = 0.6 , \, \mathcal{E}_n \left(z_1 \right) = \mathcal{E}_n \left(z_3 \right) = 0.5 \\ & \mathcal{E}_h \left(z_0 \right) = 0.4 , \, \mathcal{E}_h \left(z_1 \right) = \mathcal{E}_h \left(z_2 \right) = \mathcal{E}_h \left(z_3 \right) = 0.6 \\ & \text{Theorem 3.3. Let } \mathcal{L} = \langle \mathcal{L}_m, \mathcal{L}_n, \mathcal{L}_h \rangle \text{ and } \mathcal{H} = \langle \mathcal{H}_m, \mathcal{H}_n, \mathcal{H}_h \rangle \text{are two } \mathbb{SF}BI \text{ of } \mathbb{N}. \text{ If } \mathcal{L} \subset \mathcal{H} \text{ then } \mathcal{L} \end{aligned}$

 $\cap \mathcal{K}$ is SSFBI of \aleph

Proof. Since \mathcal{L} and \mathcal{K} are two SF*BI*s of \aleph . Let i, j, k $\in \aleph$. Then we first prove for membership function

$$\begin{aligned} (\mathcal{L}_m \cap \ \mathcal{K}_m)(\mathbf{i} - \mathbf{j}) &= \mathcal{L}_m(\mathbf{i} - \mathbf{j}) \land \mathcal{K}_m \ (\mathbf{i} - \mathbf{j}) \\ &\geq (\mathcal{L}_m(\mathbf{i}) \land \mathcal{L}_m \ (\mathbf{j})) \land (\mathcal{K}_m \ (\mathbf{i}) \land \mathcal{K}_m \ (\mathbf{j})) \\ &= (\mathcal{L}_m \ (\mathbf{i}) \land \mathcal{K}_m \ (\mathbf{i})) \land (\mathcal{L}_m \ (\mathbf{j}) \lor \mathcal{K}_m \ (\mathbf{j})) \\ &= (\mathcal{L}_m \cap \ \mathcal{K}_m) \ (\mathbf{i}) \land (\mathcal{L}_m \cap \ \mathcal{K}_m) \ (\mathbf{j}) \end{aligned}$$

Also

$$\begin{aligned} (\mathcal{L}_m \cap \mathcal{K}_m)(ijk) &= \mathcal{L}_m (ijk) \land \mathcal{K}_m (ijk) \\ &\geq (\mathcal{L}_m (i) \land \mathcal{L}_m (k)) \land (\mathcal{K}_m (i) \land \mathcal{K}_m (k)) \\ &= (\mathcal{L}_m (i) \land \mathcal{K}_m (i)) \land (\mathcal{L}_m (k) \lor \mathcal{K}_m (k)) \\ &= (\mathcal{L}_m \cap \mathcal{K}_m) (i) \land (\mathcal{L}_m \cap \mathcal{K}_m) (k) \end{aligned}$$
Consequently we can prove for non-membership function

$$\begin{split} & (\mathcal{L}_n \cap \mathcal{K}_n)(i-j) \geq (\mathcal{L}_n \cap \mathcal{K}_n) \text{ (i) } \land (\mathcal{L}_n \cap \mathcal{K}_n) \text{ (j)} \\ & (\mathcal{L}_n \cap \mathcal{K}_n)(ijk) \geq (\mathcal{L}_n \cap \mathcal{K}_n) \text{ (i) } \land (\mathcal{L}_n \cap \mathcal{K}_n) \text{ (k)} \\ & \text{Similarly we can prove for hesitancy function} \\ & (\mathcal{L}_h \cap \mathcal{K}_h)(i-j) \leq (\mathcal{L}_h \cap \mathcal{K}_h) \text{ (i) } \lor (\mathcal{L}_h \cap \mathcal{K}_h) \text{ (j)} \\ & (\mathcal{L}_h \cap \mathcal{K}_h)(ijk) \leq (\mathcal{L}_h \cap \mathcal{K}_h) \text{ (i) } \land (\mathcal{L}_h \cap \mathcal{K}_h) \text{ (k)} \end{split}$$

Thus intersection of two SFBI is SFBI

Theorem 3.4 Arbitrary intersection of SFBI is also SFBI.

Proof. Let $\{\mathcal{P}^i = \langle \mathcal{P}^i_m, \mathcal{P}^i_n, \mathcal{P}^i_h \rangle, i \in I\}$ be a family of SFBI of \aleph .

For any α , β , $\gamma \in \aleph$. We have

$$\begin{split} \bigcap_{i \in I} \mathcal{P}_{m}^{i}(\mathbf{k}) &= \bigcap_{i \in I} \mathcal{P}_{m}^{i}(\mathbf{k}), \bigcap_{i \in I} \mathcal{P}_{n}^{i}(\mathbf{k}) = \bigcap_{i \in I} \mathcal{P}_{n}^{i}(\mathbf{k}), \bigcap_{i \in I} \mathcal{P}_{h}^{i}(\mathbf{k}) = \bigcap_{i \in I} \mathcal{P}_{h}^{i}(\mathbf{k}) \\ \text{consider} \bigcap_{i \in I} \mathcal{P}_{m}^{i}(\alpha - \beta) &= inf_{i \in I} \mathcal{P}_{m}^{i}(\alpha - \beta) \\ &\geq inf_{i \in I}(\mathcal{P}_{m}^{i}(\alpha) \Lambda \mathcal{P}_{m}^{i}(\beta)) \\ &= inf_{i \in I}(\mathcal{P}_{m}^{i}(\alpha) \Lambda \bigcap_{i \in I} \mathcal{P}_{m}^{i}(\beta)) \\ &= \bigcap_{i \in I} \mathcal{P}_{m}^{i}(\alpha) \Lambda \bigcap_{i \in I} \mathcal{P}_{m}^{i}(\beta) \\ \text{Also } \bigcap_{i \in I} \mathcal{P}_{m}^{i}(\alpha i \beta) = inf_{i \in I} \mathcal{P}_{m}^{i}(\alpha i \beta) \end{split}$$

$$\geq inf_{i\epsilon l}(\mathcal{P}_{m}^{i}(\alpha)\Lambda\mathcal{P}_{m}^{i}(\beta))$$
$$= inf_{i\epsilon l}(\mathcal{P}_{m}^{i}(\alpha)\Lambda inf_{i\epsilon l}\mathcal{P}_{m}^{i}(\beta))$$
$$= \bigcap_{i\epsilon l}\mathcal{P}_{m}^{i}(\alpha)\Lambda\bigcap_{i\epsilon l}\mathcal{P}_{m}^{i}(\beta)$$

Consequently we can prove for

$$\begin{split} &\bigcap_{i \in I} \mathcal{P}_{n}^{i}\left(\alpha - \beta\right) \geq inf_{i \in I}\mathcal{P}_{n}^{i}(\alpha) \operatorname{Ain} f_{i \in I}\mathcal{P}_{n}^{i}(\beta) \\ &\bigcap_{i \in I} \mathcal{P}_{h}^{i}\left(\alpha - \beta\right) \leq inf_{i \in I}\mathcal{P}_{h}^{i}(\alpha) \operatorname{Ain} f_{i \in I}\mathcal{P}_{h}^{i}(\beta) \end{split}$$

And

$$\begin{split} &\bigcap_{i \in I} \mathcal{P}_{n}^{i}\left(\alpha j\beta\right) \geq \bigcap_{i \in I} \mathcal{P}_{n}^{i}\left(\alpha\right) \Lambda \,\bigcap_{i \in I} \mathcal{P}_{n}^{i}\left(\beta\right) \\ &\bigcap_{i \in I} \mathcal{P}_{h}^{i}\left(\alpha j\beta\right) \leq \bigcap_{i \in I} \mathcal{P}_{h}^{i}\left(\alpha\right) \Lambda \,\bigcap_{i \in I} \mathcal{P}_{h}^{i}\left(\beta\right) \end{split}$$

Definition 3.5. Let Θ be a mappings from a set A to B and \mathcal{F} be a SF on B. Then the preimage of \mathcal{F} under Θ denoted by Θ -1 (\mathcal{F} (x)) is defined by

 $\Theta - 1 \ (\mathcal{F}_m (\mathbf{x})) = \mathcal{F}_m \ (\Theta(\mathbf{x})), \ \Theta - 1 \ (\mathcal{F}_n (\mathbf{x})) = \mathcal{F}_n \ (\Theta(\mathbf{x})) \text{ and } \Theta - 1 \ (\mathcal{F}_h (\mathbf{x})) = \mathcal{F}_h \ (\Theta(\mathbf{x})) \text{ for all } \mathbf{x} \in \mathfrak{X}.$

Theorem 3.6. If $\Theta : \mathfrak{A} \longrightarrow \mathfrak{B}$ be an onto homomorphism of \aleph . Let \mathfrak{P} be a \mathbb{SF} of B then Θ -1 (\mathfrak{P}) is a \mathbb{SFBI} of A.

Proof : Let α , $\beta \in \mathfrak{A}$. Then

$$\Theta^{-1}(\mathfrak{P}_m)(\alpha - \beta) = \mathfrak{P}_m(\Theta(\alpha - \beta))$$

= $\mathfrak{P}_m(\Theta(\alpha) - \Theta(\beta))$
 $\geq min\{\mathfrak{P}_m(\Theta(\alpha)), \mathfrak{P}_m(\Theta(\beta))\}$
= $min\{\Theta^{-1}(\mathfrak{P}_m)(\alpha), \Theta^{-1}(\mathfrak{P}_m)(\beta)\}$

Also

$$\begin{split} \Theta^{-1}(\mathfrak{P}_m)(\alpha k\beta) &= \mathfrak{P}_m(\Theta(\alpha k\beta)) \\ &= \mathfrak{P}_m(\Theta(\alpha)\Theta(k)\Theta(\beta)) \\ &\geq \min\{\mathfrak{P}_m(\Theta(\alpha)), \mathfrak{P}_m(\Theta(\beta))\} \\ &= \min\{\Theta^{-1}(\mathfrak{P}_m)(\alpha), \Theta^{-1}(\mathfrak{P}_m)(\beta)\} \end{split}$$

Hence proved

4.ROUGH SPERICAL FUZZY BI-IDEALS(RSFBI) IN NEAR -RINGS

In this section we introduce the new idea $\mathbb{RSF}BI$ in near ring \aleph . Throughout this section let us denote Π the complete congruence relation on \aleph .

Definition 4.1. Let $\mathcal{E} = \langle j / \mathcal{E}_m(j), \mathcal{E}_n(j) \rangle$ be a SF set in N and Π be a congruence relation on N. Then RSF set of \mathcal{E} with respect to the approximation space (Π , N) is defined by $\Pi(\mathcal{E}) = (\Pi^-(\mathcal{E}), \Pi^+(\mathcal{E}))$.

The lower approximation of \mathcal{E} is denoted by $\Pi^{-}(\mathcal{E})$ and defined as

$$\begin{split} &\Pi^{-}(\mathcal{E}) = \langle j, \Pi^{-}(\mathcal{E}_{m})(j), \Pi^{-}(\mathcal{E}_{n})(j), \Pi^{-}(\mathcal{E}_{h})(j) | j \in \aleph \rangle \\ & \text{Where} \\ &\Pi^{-}(\mathcal{E}_{m})(l) = \bigwedge_{s \in [l]_{\Pi}} \mathcal{E}_{m}(s), \Pi^{-}(\mathcal{E}_{n})(l) = \bigwedge_{s \in [l]_{\Pi}} \mathcal{E}_{n}(s), \Pi^{-}(\mathcal{E}_{h})(l) = \bigvee_{s \in [l]_{\Pi}} \mathcal{E}_{h}(s) \\ & \text{With the condition that} \\ & 0 \leq (\Pi^{-}(\mathcal{E}_{m}))^{2} + (\Pi^{-}(\mathcal{E}_{n}))^{2} + (\Pi^{-}(\mathcal{E}_{h}))^{2} \leq 1 \end{split}$$

and the upper approximation of \mathcal{E} is denoted by $\Pi^+(\mathcal{E})$ and defined as $\Pi^{+}(\mathcal{E}) = \langle j, \Pi^{+}(\mathcal{E}_{m})(j), \Pi^{+}(\mathcal{E}_{n})(j), \Pi^{+}(\mathcal{E}_{h})(j) | j \in \mathbb{X} \rangle$ $\Pi^{+}(\mathcal{E}_{m})(l) = \bigvee_{s \in [l]_{\Pi}} \mathcal{E}_{m}(s), \Pi^{+}(\mathcal{E}_{n})(l) = \bigwedge_{s \in [l]_{\Pi}} \mathcal{E}_{n}(s), \Pi^{+}(\mathcal{E}_{h})(l) = \bigwedge_{s \in [l]_{\Pi}} \mathcal{E}_{h}(s)$ With the condition that $0 \le (\Pi^+(\mathcal{E}_m))^2 + (\Pi^+(\mathcal{E}_n))^2 + (\Pi^+(\mathcal{E}_h))^2 \le 1$ **Example 4.2.** Let $\aleph = \{L_1, L_2, L_3, L_4, L_5, L_6, L_7, L_8\}$ be the universe set and Π be the congruence relation on N. The equivalence classes of N are defined by $\aleph/\Pi = \{\{L_1, L_6, L_8\}, \{L_2\}, \{L_3\}, \{L_4, L_5, L_7\}\}$ Let \mathcal{E} be the SF set of \aleph defined by $\mathcal{E}_m(x) = \{L_1 = 0.5\}$ $L_2 = P_7 = 0.4$ $L_3 = P_6 = 0.8$ L₄=0.6 $L_{5}=0.7$ $P_8 = 0.3$ $\mathcal{E}_n(x) = \{ L_1 = L_5 = L_8 = 0.1 \}$ $L_2 = 0.6 L_3 = L_6 = 0.2$ $L_4 = 0.3$ $L_7 = 0.4$ $\mathcal{E}_{h}(x) = \{L_{1} = 0.4\}$ $L_2 = L_8 = 0.2$ $L_3 = 0.5$ $L_4 = L_6 = 0.4$ $L_5 = 0.3$ $L_7 = 0.7$ Then the lower approximation of \mathcal{E} for all $x \in \aleph$ is given by $\Pi^{-}(\mathcal{E}_m) = \{L_1 = L_6 = L_8 = 0.3\}$ $L_2 = L_4 = L_5 = L_7 = 0.4$ $L_3 = 0.8$ $\Pi^{-}(\mathcal{E}_n) = \{L_1 = L_4 = L_5 = L_6 = L_7 = L_8 = 0.1$ $L_2 = 0.6$ $L_3 = 0.2$ $\Pi^{-}(\mathcal{E}_h) = \{L_1 = L_6 = L_8 = 0.6\}$ $L_2 = 0.2$ $L_{3} = 0.5$ $L_4 = L_5 = L_7 = 0.7$ Then the upper approximation of \mathcal{E} for all $x \in \aleph$ is given by $\Pi^+(\mathcal{E}_m) = \{L_1 = L_3 = L_6 = L_8 = 0.8$ $L_2 = 0.4$ $L_4 = L_5 = L_7 = 0.7$ $\Pi^+(\mathcal{E}_n) = \{L_1 = L_3 = L_6 = L_8 = 0.2$

 $L_2 = 0.6$ $L_4 = L_5 = L_7 = 0.4$ $\Pi^+(\mathcal{E}_h) = \{L_1 = L_2 = L_6 = L_8 = 0.2$ $L_3 = 0.5$ $L_4 = L_5 = L_7 = 0.5$ Then $\Pi(\mathcal{E}) = (\Pi^{-}(\mathcal{E}), \Pi^{+}(\mathcal{E}))$ is a RSF set of \aleph **Example 4.3.** Let $\aleph = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8\}$ be the universe set and Π be the congruence relation on \aleph . The equivalence classes of \aleph are defined by $\aleph/\Pi = \{\{P_1, P_4\}, \{P_2, P_3, P_6\}, \{P_5\}, \{P_7, P_8\}\}$ Let \mathcal{E} be the SF set of \aleph defined by $\mathcal{E}_m(x) = \{P_1 = 0.2\}$ $P_2 = 0.5$ $P_3 = P_8 = 0.3$ $P_4 = P_6 = 0.3$ $P_5 = P_7 = 0.4$ $\mathcal{E}_n(x) = \{P_1 = 0.2\}$ $P_2 = P_6 = P_8 = 0.4$ $P_3 = 0.2$ $P_4 = 0.3$ $P_5 = 0.5$ $P_7 = 0.7$ $\mathcal{E}_h(x) = \{P_1 = P_3 = 0.4\}$ $P_2 = 0.7$ $P_4 = 0.2$ $P_5 = P_7 = 0.5$ $P_6 = 0.3$ $P_8 = 0.8$ Then the lower approximation of \mathcal{E} for all $x \in \aleph$ is given by $\Pi^{-}(\mathcal{E}_m) = \{ \mathbf{P}_1 = \mathbf{P}_4 = 0.2 \}$ $P_5 = 0.4$ $P_2 = P_3 = P_6 = P_7 = P_8 = 0.3$ $\Pi^{-}(\mathcal{E}_n) = \{P_1 = P_4 = 0.1\}$ $P_2 = P_3 = P_6 = 0.2$ $P_5 = 0.5$ $P_7 = P_8 = 0.4$ $\Pi^{-}(\mathcal{E}_h) = \{P_1 = P_4 = 0.4$ $P_2 = P_3 = P_6 = 0.7$ $P_5 = 0.5$ $P_7 = P_8 = 0.8$ Then the upper approximation of \mathcal{E} for all $x \in \aleph$ is given by $\Pi^+(\mathcal{E}_m) = \{P_1 = P_2 = P_3 = P_4 = P_6 = 0.6$

$$P_{5} = P_{7} = P_{8} = 0.4$$

$$\Pi^{+}(\mathcal{E}_{n}) = \{P_{1} = P_{4} = 0.3$$

$$P_{2} = P_{3} = P_{6} = 0.4$$

$$P_{5} = 0.5$$

$$P_{7} = P_{8} = 0.7$$

$$\Pi^{+}(\mathcal{E}_{h}) = \{P_{1} = P_{4} = 0.2$$

$$P_{2} = P_{3} = P_{6} = 0.3$$

$$P_{5} = P_{7} = P_{8} = 0.5$$

Then $\Pi(\mathcal{E}) = (\Pi^{-}(\mathcal{E}), \Pi^{+}(\mathcal{E}))$ is a \mathbb{RSF} set of \aleph

Definition 4.4. A SFBI of \aleph is said to be a RSFBI of \aleph if it is both Π -lower RSFBI and Π -upper RSFBI of \aleph .

A $\mathbb{SF}BI$ of \mathbb{N} is called a Π -lower (upper) $\mathbb{RSF}BI$ of \mathbb{N} if its lower(upper) approximation is $\mathbb{SF}BI$ of \mathbb{N} .

Example 4.5. Let $\aleph = \{z_0, z_1, z_2\}$ be a near-ring with the following multiplication table. Table 3

+	Z0	Z 1	Z 2
Z0	Z0	z_1	Z2
z_1	Z1	Z2	Z0
Z2	\mathbf{Z}_2	z_1	Z0

Table 4

•	Z0	Z1	Z 2
Z0	Z ₀	Z0	Z0
z_1	Z0	Z1	Z2
\mathbf{Z}_2	Z0	Z ₂	Zl

Let Υ be the congruence relation on \aleph . The equivalence classes of \aleph are defined by $\aleph/\Upsilon = \{\{z_0\}, \{z_1, z_2\}\}$

Let \mathcal{E} be a SF set of N defined by $\mathcal{E}_m(z_0) = \mathcal{E}_m(z_1) = \mathcal{E}_m(z_2) = 0.2$ $\mathcal{E}_n(z_0) = 0.5, \mathcal{E}_n(z_1) = \mathcal{E}_n(z_2) = 0.4$ $\mathcal{E}_h(z_1) = 0.5, \mathcal{E}_h(z_0) = \mathcal{E}_h(z_2) = 0.3$ Then the lower approximation of \mathcal{E} is $\underline{\Pi}(\mathcal{E}_m)(z_0) = \underline{\Pi}(\mathcal{E}_m)(z_1) = \underline{\Pi}(\mathcal{E}_m)(z_2) = 0.2$ $\underline{\Pi}(\mathcal{E}_n(z_0) = 0.5, \underline{\Pi} \mathcal{E}_n(z_1) = \underline{\Pi}(\mathcal{E}_n(z_1) = 0.4$ $\underline{\Pi}(\mathcal{E}_h(z_1) = 0.3, \underline{\Pi}(\mathcal{E}_h(z_1) = \underline{\Pi}(\mathcal{E}_h(z_1) = 0.5$ Then the upper approximation of \mathcal{E} is $\overline{\Pi}(\mathcal{E}_m)(z_0) = \overline{\Pi}(\mathcal{E}_m)(z_1) = \overline{\Pi}(\mathcal{E}_m)(z_2) = 0.2$ $\overline{\Pi}(\mathcal{E}_n)(z_0) = 0.5, \overline{\Pi}(\mathcal{E}_n)(z_1) = \overline{\Pi}(\mathcal{E}_n)(z_1) = 0.4$ $\overline{\Pi}(\mathcal{E}_h)(z_0) = \overline{\Pi}(\mathcal{E}_n)(z_1) = \overline{\Pi}(\mathcal{E}_n)(z_1) = 0.3$ then $\underline{\Pi}(\mathcal{E})$ and $\overline{\Pi}(\mathcal{E})$ are SFBI of N. hence \mathcal{E} is a RSFBI of N **Theorem 4.6.** Let \mathcal{E} be a SFBI of N. Then \mathcal{E} be a RSFBI of N Proof : Assume that \mathcal{E} be a $\mathbb{SF}BI$ of \mathbb{X} . we want to prove \mathcal{E} is $\mathbb{RSF}BI$. For that we have to prove

 $\Pi^{-}(\mathcal{E})$ and $\Pi^{+}(\mathcal{E})$ are SFBI of \aleph . Let i, j, $p \in \aleph$ Then we consider $\Pi^{-}(\mathcal{E}_m)(i-j) = \bigwedge_{s \in [i-j]_{\Pi}} \mathcal{E}_m(s)$ $= \bigwedge_{s \in [i]_{\Pi} + [-i]_{\Pi}} \mathcal{E}_m(s)$ $= \bigwedge_{k-q \in [i]_{\Pi} + [-j]_{\Pi}} \mathcal{E}_m(k-q)$ $= \bigwedge_{k \in [i]_{\Pi}, q \in [-i]_{\Pi}} \mathcal{E}_m(k) \wedge \mathcal{E}_m(q)$ $= (\bigwedge_{k \in [i]_{\Pi}} \mathcal{E}_m(k)) \land (\bigwedge_{q \in [-j]_{\Pi}} \mathcal{E}_m(q))$ $=\Pi^{-}(\mathcal{E}_m)(i) \wedge \Pi^{-}(\mathcal{E}_m)(-j)$ $\geq \Pi^{-}(\mathcal{E}_m)(\mathbf{i}) \wedge \Pi^{-}(\mathcal{E}_m)(\mathbf{j})$ Moreover $\Pi^{-}(\mathcal{E}_m)(ijk) = \bigwedge_{s \in [ijk]_{\Pi}} \mathcal{E}_m(s)$ $= \bigwedge_{s \in [i]_{\pi}[i]_{\pi}[k]_{\pi}} \mathcal{E}_m(s)$ $= \bigwedge_{pqr \in [i]_{\Pi}[j]_{\Pi}[k]_{\Pi}} \mathcal{E}_m(pqr)$ $\geq \bigwedge_{p \in [i]_{\Pi} r \in [k]_{\Pi}} \min \left\{ \mathcal{E}_m(p), \mathcal{E}_m(\mathbf{r}) \right\}$ $= \min \left\{ \bigwedge_{p \in [i]_{\Pi}} \mathcal{E}_m(p), \bigwedge_{r \in [k]_{\Pi}} \mathcal{E}_m(r) \right\}$ min { $\Pi^{-}(\mathcal{E}_m)(i), \Pi^{-}(\mathcal{E}_m)(k)$ } similarly we can prove the other case $\Pi^{-}(\mathcal{E}_n)(i-j) \geq \Pi^{-}(\mathcal{E}_n)(i) \wedge \Pi^{-}(\mathcal{E}_n)(j)$ $\Pi^{-}(\mathcal{E}_n)(ijk) \geq \min\{\Pi^{-}(\mathcal{E}_n)(i), \Pi^{-}(\mathcal{E}_n)(k)\}$ and $\Pi^{-}(\mathcal{E}_{h})(i-j) \geq \Pi^{-}(\mathcal{E}_{h})(i) \wedge \Pi^{-}(\mathcal{E}_{h})(j)$ $\Pi^{-}(\mathcal{E}_{h})(ijk) \geq \min\{\Pi^{-}(\mathcal{E}_{h})(i), \Pi^{-}(\mathcal{E}_{h})(k)\}$ Hence $\Pi^{-}(\mathcal{E})$ is $\mathbb{S}\mathbb{F}BI$ of \mathbb{N} . consequently we can prove $\Pi^{+}(\mathcal{E})$ is $\mathbb{S}\mathbb{F}BI$ of \mathbb{N} . Thus \mathcal{E} is a $\mathbb{R}\mathbb{S}\mathbb{F}BI$ of N. **Theorem 4.7.** If \mathcal{E} and \mathcal{F} are \mathbb{RSFBI} of \aleph . Then $\mathcal{E} \cap \mathcal{F}$ is \mathbb{RSFBI} of \aleph . Proof. Since \mathcal{E} and \mathcal{F} are \mathbb{RSFBI} of \aleph . Then for all i, $j \in \aleph$ we consider $(\Pi^{-}(\mathcal{E}_m) \cap \Pi^{-}(\mathcal{F}_m))(\mathbf{i}-\mathbf{j})$ $= (\Pi^{-}(\mathcal{F}_m))(i-j)\Lambda(\Pi^{-}(\mathcal{E}_m)(i-j))$ $\geq (\Pi^{-}(\mathcal{E}_{m})(i)\Lambda \Pi^{-}(\mathcal{E}_{m})(j))\Lambda (\Pi^{-}(\mathcal{F}_{m})(i)\Lambda \Pi^{-}(\mathcal{F}_{m})(j))$ $= (\Pi^{-}(\mathcal{E}_m)(i) \Lambda \Pi^{-}(\mathcal{F}_m)(i)) \Lambda (\Pi^{-}(\mathcal{E}_m)(j) \Lambda \Pi^{-}(\mathcal{F}_m)(j))$ $\geq (\Pi^{-}(\mathcal{E}_{m}) \cap (\mathcal{F}_{m}))(i) \wedge (\Pi^{-}(\mathcal{E}_{m}) \cap (\mathcal{F}_{m}))(j)$ Moreover $(\Pi^{-}(\mathcal{E}_m) \cap \Pi^{-}(\mathcal{F}_m))(ijk)$ $=(\Pi^{-}(\mathcal{E}_m))(ijk)\Lambda(\Pi^{-}(\mathcal{F}_m)(ijk))$ $\geq (\Pi^{-}(\mathcal{E}_{m})(i)\Lambda\Pi^{-}(\mathcal{E}_{m})(k))\Lambda(\Pi^{-}(\mathcal{F}_{m})(i)\Lambda\Pi^{-}(\mathcal{F}_{m})(k))$ $\geq (\Pi^{-}(\mathcal{E}_m) \cap (\mathcal{F}_m))(i) \wedge (\Pi^{-}(\mathcal{E}_m) \cap (\mathcal{F}_m))(k)$ For nonmembership function

 $(\Pi^{-}(\mathcal{E}_n) \cap \Pi^{-}(\mathcal{F}_n))(i-j)$

= $(\Pi^{-}(\mathcal{F}_n))(i-j)\Lambda(\Pi^{-}(\mathcal{E}_n)(i-j))$ $\geq (\Pi^{-}(\mathcal{E}_{n})(i)\Lambda \Pi^{-}(\mathcal{E}_{n})(j))\Lambda (\Pi^{-}(\mathcal{F}_{n})(i)\Lambda \Pi^{-}(\mathcal{F}_{n})(j))$ $= (\Pi^{-}(\mathcal{E}_{n})(i) \Lambda \Pi^{-}(\mathcal{F}_{n})(i)) \Lambda (\Pi^{-}(\mathcal{E}_{n})(j) \Lambda \Pi^{-}(\mathcal{F}_{n})(j))$ $\geq (\Pi^{-}(\mathcal{E}_{n}) \cap (\mathcal{F}_{n}))(i) \wedge (\Pi^{-}(\mathcal{E}_{n}) \cap (\mathcal{F}_{n}))(j)$ Also $(\Pi^{-}(\mathcal{E}_n) \cap \Pi^{-}(\mathcal{F}_n))(ijk)$ = $(\Pi^{-}(\mathcal{E}_{n}))(ijk)\Lambda(\Pi^{-}(\mathcal{F}_{n})(ijk))$ $\geq (\Pi^{-}(\mathcal{E}_{n})(i)\Lambda \Pi^{-}(\mathcal{E}_{n})(k))\Lambda (\Pi^{-}(\mathcal{F}_{n})(i)\Lambda \Pi^{-}(\mathcal{F}_{n})(k))$ $\geq (\Pi^{-}(\mathcal{E}_{n}) \cap (\mathcal{F}_{n}))(i) \wedge (\Pi^{-}(\mathcal{E}_{n}) \cap (\mathcal{F}_{n}))(k)$ Finally for hesitancy function $(\Pi^{-}(\mathcal{E}_{h}) \cap \Pi^{-}(\mathcal{F}_{h}))(\mathbf{i}-\mathbf{j})$ = $(\Pi^{-}(\mathcal{E}_{h}))(i-j)\Lambda(\Pi^{-}(\mathcal{F}_{h})(i-j))$ $\geq (\Pi^{-}(\mathcal{E}_{h})(i) \vee \Pi^{-}(\mathcal{E}_{h})(j)) \Lambda (\Pi^{-}(\mathcal{F}_{h})(i) \vee \Pi^{-}(\mathcal{F}_{h})(j))$ $= (\Pi^{-}(\mathcal{E}_{h})(i) \wedge \Pi^{-}(\mathcal{F}_{h})(i)) \vee (\Pi^{-}(\mathcal{E}_{h})(j) \wedge \Pi^{-}(\mathcal{F}_{h})(j))$ $\geq (\Pi^{-}(\mathcal{E}_{h}) \cap (\mathcal{F}_{h}))(i) \vee (\Pi^{-}(\mathcal{E}_{h}) \cap (\mathcal{F}_{h}))(i)$ Also $(\Pi^{-}(\mathcal{E}_{h}) \cap \Pi^{-}(\mathcal{F}_{h}))(ijk)$ = $(\Pi^{-}(\mathcal{E}_{h}))(ijk)\Lambda(\Pi^{-}(\mathcal{F}_{h})(ijk))$ $\geq (\Pi^{-}(\mathcal{E}_{h})(i) \vee \Pi^{-}(\mathcal{E}_{h})(k)) \Lambda (\Pi^{-}(\mathcal{F}_{h})(i) \vee \Pi^{-}(\mathcal{F}_{h})(k))$ $\geq (\Pi^{-}(\mathcal{E}_{h}) \cap (\mathcal{F}_{h}))(i) \vee (\Pi^{-}(\mathcal{E}_{h}) \cap (\mathcal{F}_{h}))(k)$ Therefore $\Pi^{-}(\mathcal{E}_m) \cap \Pi^{-}(\mathcal{F}_m)$ is $\mathbb{SF}BI$ of \mathbb{N} . Similarly we can prove for $\Pi^{+}(\mathcal{E}_m) \cap$ $\Pi^+(\mathcal{F}_m)$.Consequently we prove for the remaining cases .Hence $\mathcal{E} \cap \mathcal{F}$ is $\mathbb{RSF}BI$ of \aleph .

5.CONCLUSION

Spherical fuzzy sets are an attempt to provide a general view to three dimensional fuzzy sets. To investigate the structure of an algebraic system, we see that the spherical fuzzy ideals on near ring with special properties always play a central role. The purpose of this paper is to initiated the concept of spherical fuzzy bi-ideals and rough spherical fuzzy bi-ideals on near rings. Some characterizations of rough spherical fuzzy bi-ideals are obtained on near ring. Our future work is to extend this idea to other algebraic domain such as semi hyper near ring, semigroup etc.

6.REFERENCES

[1] Attanassov. K, Intuitionistic fuzzy sets, Fuzzy sets and system, 20 (1986) 87-96.

[2] Cuong BC (2014) Picture fuzzy sets. J Comput Sci CyberneIcs 30(4):409-420.

[3] Dubois D and Prade H, Rough fuzzy sets and fuzzy rough sets, International Journal of General

Systems, 17, (1990), 191-209.

[4] Davvaz. B, roughness in rings, Information Sciences, 164(2004),147-163.

[5] Gundogdu. F.K. and Kahraman. C, Properties and Arithmetic Operations of spherical fuzzy subsets,

Studies in Fuzziness and Soft Computing, (2018), 3–25.

[6] Gundogdu. F.K. and Kahraman. C (2019a) A novel spherical fuzzy analytic hierarchy process and its

renewable energy application. Soft Comput.

[7] Kazanci.O and Davvaz. B On the structure of rough prime (primary) ideals and rough fuzzy prime

(primary)ideals in commutative rings, Information Sciences, 178(5), (2008), 1343-1354.

[8] Kuroki. N, Rough ideals in semigroups, Information Sciences, 100(1-4), (1997), 139-163.

[9] Pawlak. Z, Rough sets, Int.J.Inform.comput science, 11(1982), 341-356.

[10] Smarandache. F, A Unifying Field in Logics. ProQuest, Ann Arbor, Michigan, USA. 1998, 1-141.

[11] Shahzaib Ashraf, Saleem Abdullah, Muhammad Aslam, Muhammad Qiyas and Marwan A. Kutbi, Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms, Journal of Inteligent and Fuzzy sytems, 36(2019)6089-6102

[12] Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529-539

[13] Yager RR (2013) Pythagorean fuzzy subsets. In: 2013 joint IFSA world congress and NAFIPSannualmeeting (IFSA/NAFIPS). IEEE, pp 57–61

[14] Zadeh. L. A, Fuzzy sets. Inform and control. 8 (1965) 338-353.

[15] Zadeh. L. A (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(3):199–249