ROUGH SPHERICAL FUZZY BI-IDEAL IN NEAR RINGS

V.S.Subha ${ }^{1}$,S.Lavanya ${ }^{2}$, C.B.Aswini ${ }^{3}$
Assistant professor (deputed),PG and Research department of mathematics ,Govt Arts college C.Multur Chidambaram ${ }^{1}$
Assistant professor,Department of mathematics,Bharathi womens college chennai ${ }^{2}$
Department of mathematics ,Annamalai university,Annamalai nagar, 608002^{3}

Abstract

This paper studies relationship between spherical fuzzy set, rough set and near ring. We define spherical fuzzy bi-ideal in near ring and pro-pose rough spherical fuzzy bi-ideal in near ring.Investigate some interesting properties of rough spherical fuzzy bi-ideal. Keywords: Spherical fuzzy set, Spherical fuzzy bi-ideal, Near-ring, Rough set, rough fuzzy set, Rough spherical fuzzy set, Rough spherical fuzzy bi-ideal..

1.INTRODUCTION

Fuzzy [14] sets have a great progress in every scientific research area. After the introduction of ordinary fuzzy sets, new extensions have appeared one by one in the literature. Among these extensions, picture fuzzy sets [2], neutrosophic sets [10] and spherical fuzzy sets [5] are the members of the same class since any element in these sets is represented by a membership degree, a non-membership degree and a hesitancy degree assigned by independently. Spherical fuzzy sets have been proposed by Gundogdu and Kahraman [5]. The notion of rough sets was introduced by Pawlak [9] in the year 1982. The algebraic approach of rough sets was studied by many researchers. The basic idea of rough set is based upon the approximation of sets by a pair of sets known as the lower approximation and the upper approximation of a set. The lower and upper approximation operators are based on equivalence relation. The rest of the paper is organized as follows: Section 2 is full of information about the basics. In Section 3, we introduced the spherical fuzzy bi-ideal in near ring and discussed some interesting properties. At last in section 4 we combine rough set and spherical fuzzy set. Also we define rough spherical fuzzy bi-ideal in near ring.

2.PRELIMINARIES

We review some definitions that will be useful in our results. Throughout this paper let us denote \aleph as near ring. Let Π be an equivalence relation on \aleph. A congruence relation Π on S is said to be complete if $[\mathrm{a}]_{\Pi}[\mathrm{b}]_{\Pi}=[\mathrm{ab}]_{\Pi}$.
Let $(\mathbb{\aleph}, \Pi)$ be an approximation space. Let A be any nonempty subset of \mathcal{N}. The sets

$$
\begin{aligned}
& \Pi^{-}(A)=\{x \in N /[x] \Pi \subseteq A\} \text { and } \\
& \Pi^{+}(A)=\{x \in K /[x] \Pi \cap A \neq \varphi\}
\end{aligned}
$$

are called the lower and upper approximations of A . Then $\Pi(\mathrm{A})=\left(\Pi^{-}(\mathrm{A}), \Pi^{+}(\mathrm{A})\right)$ is called rough set in (S, Π), iff $\Pi^{-}(\mathrm{A}) \neq \Pi^{+}(\mathrm{A})$. A fuzzy subset of a nonempty set X is defined as a function $\beta: \mathrm{X} \rightarrow[0,1]$ Let Λ be a fuzzy subset of \aleph. The fuzzy subsets of \mathcal{N} defined by

$$
\Pi^{+}(\Lambda)(x)=\vee_{a \in[\mathrm{x}]_{\Pi}} \Lambda(\mathrm{a}) \quad \text { and } \quad \Pi^{-}(\Lambda)(x)=\Lambda_{a \in[\mathrm{x}]_{\Pi}} \Lambda(\mathrm{a})
$$

are called respectively, the Π-upper and Π-lower approximations of the fuzzy set Λ.
Then $\Pi(\Lambda)=\left(\Pi^{-}(\Lambda), \Pi^{+}(\Lambda)\right)$ is called a rough fuzzy set of Λ with respect to Π if $\Pi^{-}(\Lambda) \neq$ $\Pi^{+}(\Lambda)$.
Definition 2.1. [1] An intuitionistic fuzzy set defined on \mathcal{N} is an object having the form
$I=\left(\left\langle i, I_{m}(i), I_{n}(i)\right\rangle: \mathrm{i} \in \mathbb{K}\right)$
of each element $i \in \mathcal{K}$ to the set I respectively, and satisfies

$$
0 \leq I_{m}+I_{\mathrm{n}} \leq 1 .
$$

Definition 2.2. [6] Let be \mathcal{E} the SF set of the universe of U is defined by $\mathcal{E}=\left\{l,\left\langle\varepsilon_{m}(l), \varepsilon_{n}(l), \varepsilon_{h}(l)\right\rangle\right\}$
Where $\varepsilon_{m}(l): \mathrm{U} \rightarrow[0,1], \varepsilon_{n}(l): \mathrm{U} \rightarrow[0,1], \varepsilon_{h}(l): \mathrm{U} \rightarrow[0,1]$ and
$0 \leq \varepsilon_{m}^{2}(l)+\varepsilon_{n}^{2}(l)+\varepsilon_{h}^{2}(l) \leq 1$ for every $l \in U$
for each l, the numbers $\varepsilon_{m}(l), \varepsilon_{n}(l)$ and $\varepsilon_{h}(l)$ are the degree of membership, non membership and hesitancy of l to ε, respectively.
Example 2.3. Let $\mathbb{N}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\}$ be the universe. A SF set \mathcal{E} of \mathcal{N} is defined by $\varepsilon_{m}(i)=\{0.6$, $0.4,0.2,0.4\}, \varepsilon_{n}(i)=\{0.6,0.5,0.3,0.6\}$ and $\varepsilon_{h}(i)=\{0.3,0.4,0.5,0.1\}$ where $\mathrm{i}=\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$.

3. SPHERICAL FUZZY BI-IDEAL (SF BI) IN NEAR RINGS

This section deals with notion ofSFBI in near-ring \mathcal{N}. Also we prove the intersection of two SFBI is also a SFBI in near ring \aleph.
Definition 3.1. A SF set $\mathcal{E}=\left\langle\varepsilon_{m}(l), \varepsilon_{n}(l), \varepsilon_{h}(l)\right\rangle$ in \mathcal{N} is called a SFBI of \mathcal{N} if the resulting conditions are true:
(1) $\varepsilon_{m}(\mathrm{i}-\mathrm{j}) \geq \varepsilon_{m}(\mathrm{i}) \wedge \varepsilon_{m}(\mathrm{j})$
$\varepsilon_{n}(\mathrm{i}-\mathrm{j}) \geq \varepsilon_{n}$ (i) $\wedge \varepsilon_{n}(\mathrm{j})$
$\varepsilon_{h}(\mathrm{i}-\mathrm{j}) \leq \varepsilon_{h}(\mathrm{i}) \vee \varepsilon_{h}(\mathrm{j})$
(2) ε_{m} (ijk) $\geq \varepsilon_{m}$ (i) $\wedge \varepsilon_{m}$ (k)
ε_{n} (ijk) $\geq \varepsilon_{n}$ (i) $\wedge \varepsilon_{n}$ (k)
ε_{h} (ijk) $\leq \varepsilon_{h}$ (i) $\vee \varepsilon_{h}$ (k) for all $\mathrm{i}, \mathrm{j}, \mathrm{k} \in \mathcal{N}$
Example 3.2. Let $\mathrm{\aleph}=\{\mathrm{z} 0, \mathrm{z} 1, \mathrm{z} 2, \mathrm{z} 3\}$ be a near-ring with the following multiplication table
TABLE 1

+	z_{0}	z_{1}	z_{2}	z_{3}
z_{0}	z_{0}	z_{1}	z_{2}	z_{3}
z_{1}	z_{1}	z_{0}	z_{3}	z_{2}
z_{2}	z_{2}	z_{3}	z_{1}	z_{0}
z_{3}	z_{3}	z_{2}	z_{0}	z_{1}

TABLE 2

\cdot	z_{0}	z_{1}	z_{2}	z_{3}
z_{0}	z_{0}	z_{0}	z_{0}	z_{0}
z_{1}	Z_{0}	z_{0}	z_{0}	z_{0}

z_{2}	z_{0}	z_{0}	z_{0}	z_{0}
z_{3}	z_{0}	z_{1}	z_{2}	z_{3}

Let \mathcal{E} be a SF set of \mathcal{N} defined by,
$\varepsilon_{m}\left(\mathrm{z}_{0}\right)=\varepsilon_{m}\left(\mathrm{z}_{1}\right)=\varepsilon_{m}\left(\mathrm{z}_{1}\right)=\varepsilon_{m}\left(\mathrm{z}_{2}\right)=0.3$
$\varepsilon_{n}\left(\mathrm{z}_{0}\right)=\varepsilon_{n}\left(\mathrm{z}_{2}\right)=0.6, \varepsilon_{n}\left(\mathrm{z}_{1}\right)=\varepsilon_{n}\left(\mathrm{z}_{3}\right)=0.5$
$\varepsilon_{h}\left(\mathrm{z}_{0}\right)=0.4, \varepsilon_{h}\left(\mathrm{z}_{1}\right)=\varepsilon_{h}\left(\mathrm{z}_{2}\right)=\varepsilon_{h}\left(\mathrm{z}_{3}\right)=0.6$
Then ε is a SFBI of \mathcal{K}
Theorem 3.3. Let $\mathcal{L}=\left\langle\mathcal{L}_{m}, \mathcal{L}_{n}, \mathcal{L}_{h}\right\rangle$ and $\mathcal{K}=\left\langle\mathcal{K}_{m}, \mathcal{K}_{n}, \mathcal{K}_{h}\right\rangle$ are two $\mathbb{S F B I s}$ of $\mathbb{\mathcal { K }}$. If $\mathcal{L} \subset \mathcal{K}$ then \mathcal{L} $\cap \mathcal{K}$ is SSFBI of \mathcal{N}
Proof. Since \mathcal{L} and \mathcal{K} are two SFBIs of $\mathbb{\aleph}$. Let $\mathrm{i}, \mathrm{j}, \mathrm{k} \in \mathbb{N}$. Then we first prove for membership function

$$
\begin{aligned}
\left(\mathcal{L}_{m} \cap \mathcal{K}_{m}\right)(\mathrm{i}-\mathrm{j}) & =\mathcal{L}_{m}(\mathrm{i}-\mathrm{j}) \wedge \mathcal{K}_{m}(\mathrm{i}-\mathrm{j}) \\
& \geq\left(\mathcal{L}_{m}(\mathrm{i}) \wedge \mathcal{L}_{m} \text { (j)) } \wedge\left(\mathcal{K}_{m}(\mathrm{i}) \wedge \mathcal{K}_{m}(\mathrm{j})\right)\right. \\
& =\left(\mathcal { L } _ { m } (\mathrm { i }) \wedge \mathcal { K } _ { m } \text { (i)) } \wedge \left(\mathcal{L}_{m}(\mathrm{j}) \vee \mathcal{K}_{m}\right.\right. \text { (j)) } \\
& =\left(\mathcal{L}_{m} \cap \mathcal{K}_{m}\right)(\mathrm{i}) \wedge\left(\mathcal{L}_{m} \cap \mathcal{K}_{m}\right)(\mathrm{j})
\end{aligned}
$$

Also

$$
\begin{aligned}
\left(\mathcal{L}_{m} \cap \mathcal{K}_{m}\right)(\mathrm{ijk}) & =\mathcal{L}_{m}(\mathrm{ijk}) \wedge \mathcal{K}_{m}(\mathrm{ijk}) \\
& \geq\left(\mathcal{L}_{m}(\mathrm{i}) \wedge \mathcal{L}_{m}(\mathrm{k})\right) \wedge\left(\mathcal{K}_{m}(\mathrm{i}) \wedge \mathcal{K}_{m}(\mathrm{k})\right) \\
& =\left(\mathcal{L}_{m}(\mathrm{i}) \wedge \mathcal{K}_{m}(\mathrm{i})\right) \wedge\left(\mathcal{L}_{m}(\mathrm{k}) \vee \mathcal{K}_{m}(\mathrm{k})\right) \\
& =\left(\mathcal{L}_{m} \cap \mathcal{K}_{m}\right)(\mathrm{i}) \wedge\left(\mathcal{L}_{m} \cap \mathcal{K}_{m}\right)(\mathrm{k})
\end{aligned}
$$

Consequently we can prove for non-membership function
$\left(\mathcal{L}_{n} \cap \mathcal{K}_{n}\right)(\mathrm{i}-\mathrm{j}) \geq\left(\mathcal{L}_{n} \cap \mathcal{K}_{n}\right)(\mathrm{i}) \wedge\left(\mathcal{L}_{n} \cap \mathcal{K}_{n}\right)(\mathrm{j})$
$\left(\mathcal{L}_{n} \cap \mathcal{K}_{n}\right)(\mathrm{ijk}) \geq\left(\mathcal{L}_{n} \cap \mathcal{K}_{n}\right)(\mathrm{i}) \wedge\left(\mathcal{L}_{n} \cap \mathcal{K}_{n}\right)(\mathrm{k})$
Similarly we can prove for hesitancy function
$\left(\mathcal{L}_{h} \cap \mathcal{K}_{h}\right)(\mathrm{i}-\mathrm{j}) \leq\left(\mathcal{L}_{h} \cap \mathcal{K}_{h}\right)(\mathrm{i}) \vee\left(\mathcal{L}_{h} \cap \mathcal{K}_{h}\right)(\mathrm{j})$
$\left(\mathcal{L}_{h} \cap \mathcal{K}_{h}\right)(\mathrm{ijk}) \leq\left(\mathcal{L}_{h} \cap \mathcal{K}_{h}\right)(\mathrm{i}) \wedge\left(\mathcal{L}_{h} \cap \mathcal{K}_{h}\right)(\mathrm{k})$
Thus intersection of two $\mathbb{S F B I}$ is $\mathbb{S F B I}$
Theorem 3.4 Arbitrary intersection of $\mathbb{S F B I}$ is also $\mathbb{S F B I}$.
Proof. Let $\left\{\mathcal{P}^{i}=\left\langle\mathcal{P}_{m}^{i}, \mathcal{P}_{n}^{i}, \mathcal{P}_{h}^{i}\right\rangle, \mathrm{i} \in \mathrm{I}\right\}$ be a family of $\mathbb{S F B I}$ of $\mathbb{\aleph}$.
For any $\alpha, \beta, \gamma \in \aleph$. We have

$$
\begin{aligned}
\bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\mathrm{k})=\bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\mathrm{k}), & \cap_{i \epsilon I} \mathcal{P}_{n}^{i}(\mathrm{k})=\bigcap_{i \epsilon I} \mathcal{P}_{n}^{i}(\mathrm{k}), \bigcap_{i \epsilon I} \mathcal{P}_{h}^{i}(\mathrm{k})=\bigcap_{i \epsilon I} \mathcal{P}_{h}^{i}(\mathrm{k}) \\
\operatorname{consider} \bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\alpha-\beta)= & \inf f_{i \in I} \mathcal{P}_{m}^{i}(\alpha-\beta) \\
& \geq \inf f_{i \epsilon I}\left(\mathcal{P}_{m}^{i}(\alpha) \Lambda \mathcal{P}_{m}^{i}(\beta)\right. \\
& =i n f_{i \epsilon I}\left(\mathcal{P}_{m}^{i}(\alpha) \Lambda i n f_{i \in I} \mathcal{P}_{m}^{i}(\beta)\right. \\
& =\bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\alpha) \Lambda \bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\beta)
\end{aligned}
$$

Also $\bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\alpha j \beta)=\inf f_{i \epsilon I} \mathcal{P}_{m}^{i}(\alpha j \beta)$

$$
\begin{aligned}
& \quad \geq \inf _{\text {iEI }}\left(\mathcal{P}_{m}^{i}(\alpha) \Lambda \mathcal{P}_{m}^{i}(\beta)\right. \\
& =\inf _{i \in I}\left(\mathcal{P}_{m}^{i}(\alpha) \operatorname{iinf}_{i \in I} \mathcal{P}_{m}^{i}(\beta)\right. \\
& =\bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\alpha) \Lambda \bigcap_{i \epsilon I} \mathcal{P}_{m}^{i}(\beta)
\end{aligned}
$$

Consequently we can prove for

$$
\begin{aligned}
& \bigcap_{i \in I} \mathcal{P}_{n}^{i}(\alpha-\beta) \geq \inf _{i \in I} \mathcal{P}_{n}^{i}(\alpha) \inf _{i \in I} \mathcal{P}_{n}^{i}(\beta) \\
& \bigcap_{i \in I} \mathcal{P}_{h}^{i}(\alpha-\beta) \leq \inf _{i \in I} \mathcal{P}_{h}^{i}(\alpha) \operatorname{\operatorname {inf}} f_{i \in I} \mathcal{P}_{h}^{i}(\beta)
\end{aligned}
$$

And

$$
\begin{aligned}
& \bigcap_{i \in I} \mathcal{P}_{n}^{i}(\alpha j \beta) \geq \bigcap_{i \in I} \mathcal{P}_{n}^{i}(\alpha) \Lambda \bigcap_{i \in I} \mathcal{P}_{n}^{i}(\beta) \\
& \bigcap_{i \in I} \mathcal{P}_{h}^{i}(\alpha j \beta) \leq \bigcap_{i \in I} \mathcal{P}_{h}^{i}(\alpha) \Lambda \bigcap_{i \in I} \mathcal{P}_{h}^{i}(\beta)
\end{aligned}
$$

Definition 3.5. Let Θ be a mappings from a set A to B and \mathcal{F} be a $\mathbb{S F}$ on B . Then the preimage of \mathcal{F} under Θ denoted by $\Theta-1(\mathcal{F}(\mathrm{x}))$ is defined by
$\Theta-1\left(\mathcal{F}_{m}(\mathrm{x})\right)=\mathcal{F}_{m}(\Theta(\mathrm{x})), \Theta-1\left(\mathcal{F}_{n}(\mathrm{x})\right)=\mathcal{F}_{n}(\Theta(\mathrm{x}))$ and $\Theta-1\left(\mathcal{F}_{h}(\mathrm{x})\right)=\mathcal{F}_{h}(\Theta(\mathrm{x}))$ for all $\mathrm{x} \in$ κ.
Theorem 3.6. If $\Theta: \mathfrak{A} \rightarrow \mathfrak{B}$ be an onto homomorphism of \mathcal{N}. Let \mathfrak{P} be a $\mathbb{S F}$ of B then $\Theta-1$ (\mathfrak{P}) is a $\mathbb{S F B I}$ of A .
Proof: Let $\alpha, \beta \in \mathfrak{U}$. Then

$$
\begin{aligned}
\Theta-1\left(\mathfrak{P}_{m}\right)(\alpha-\beta) & =\mathfrak{P}_{m}(\Theta(\alpha-\beta)) \\
= & \mathfrak{P}_{m}(\Theta(\alpha)-\Theta(\beta)) \\
& \geq \min \left\{\mathfrak{P}_{m}(\Theta(\alpha)), \mathfrak{P}_{m}(\Theta(\beta))\right\} \\
= & \min \left\{\Theta^{-1}\left(\mathfrak{P}_{m}\right)(\alpha), \Theta^{-1}\left(\mathfrak{P}_{m}\right)(\beta)\right\}
\end{aligned}
$$

Also

$$
\begin{aligned}
\Theta^{-1}\left(\mathfrak{P}_{m}\right)(\alpha k \beta)= & \mathfrak{P}_{m}(\Theta(\alpha k \beta)) \\
= & \mathfrak{P}_{m}(\Theta(\alpha) \Theta(k) \Theta(\beta)) \\
& \quad \geq \min \left\{\mathfrak{P}_{m}(\Theta(\alpha)), \mathfrak{P}_{m}(\Theta(\beta))\right\} \\
= & \min \left\{\Theta^{-1}\left(\mathfrak{P}_{m}\right)(\alpha), \Theta^{-1}\left(\mathfrak{P}_{m}\right)(\beta)\right\}
\end{aligned}
$$

Hence proved

4.ROUGH SPERICAL FUZZY BI-IDEALS(RSFBI) IN NEAR -RINGS

In this section we introduce the new idea $\mathbb{R} \mathbb{E} B I$ in near ring N. Throughout this section let us denote Π the complete congruence relation on \aleph.
Definition 4.1. Let $\mathcal{E}=\left\langle j / \mathcal{E}_{m}(j), \mathcal{E}_{n}(j), \mathcal{E}_{h}(j)\right\rangle$ be a $\mathbb{S F}$ set in $\mathbb{\aleph}$ and Π be a congruence relation on \aleph. Then $\mathbb{R} \mathbb{S F}$ set of \mathcal{E} with respect to the approximation space (Π, \aleph) is defined by $\Pi(\mathcal{E})=$ $\left(\Pi^{-}(\mathcal{E}), \Pi^{+}(\mathcal{E})\right)$.
The lower approximation of \mathcal{E} is denoted by $\Pi^{-}(\mathcal{E})$ and defined as
$\Pi^{-}(\mathcal{E})=\left\langle j, \Pi^{-}\left(\varepsilon_{m}\right)(j), \Pi^{-}\left(\varepsilon_{n}\right)(j), \Pi^{-}\left(\varepsilon_{h}\right)(j) \mid j \in \mathcal{N}\right\rangle$
Where
$\Pi^{-}\left(\mathcal{E}_{m}\right)(l)=\Lambda_{s \in[l]_{\Pi}} \mathcal{E}_{m}(\mathrm{~s}), \Pi^{-}\left(\mathcal{E}_{n}\right)(l)=\Lambda_{s \in[l]_{\Pi}} \mathcal{E}_{n}(\mathrm{~s}), \Pi^{-}\left(\mathcal{E}_{h}\right)(l)=\mathrm{V}_{s \in[l]_{\Pi}} \mathcal{E}_{h}(s)$
With the condition that
$0 \leq\left(\Pi^{-}\left(\varepsilon_{m}\right)\right)^{2}+\left(\Pi^{-}\left(\varepsilon_{n}\right)\right)^{2}+\left(\Pi^{-}\left(\varepsilon_{h}\right)\right)^{2} \leq 1$
and the upper approximation of \mathcal{E} is denoted by $\Pi^{+}(\mathcal{E})$ and defined as
$\Pi^{+}(\mathcal{E})=\left\langle j, \Pi^{+}\left(\varepsilon_{m}\right)(j), \Pi^{+}\left(\varepsilon_{n}\right)(j), \Pi^{+}\left(\varepsilon_{h}\right)(j) \mid j \in א\right\rangle$
$\Pi^{+}\left(\varepsilon_{m}\right)(l)=\bigvee_{s \in[l]_{\Pi}} \varepsilon_{m}(s), \Pi^{+}\left(\varepsilon_{n}\right)(l)=\Lambda_{s \in[l]_{\Pi}} \varepsilon_{n}(\mathrm{~s}), \Pi^{+}\left(\varepsilon_{h}\right)(l)=\Lambda_{s \in[l]_{\Pi}} \varepsilon_{h}(\mathrm{~s})$
With the condition that
$0 \leq\left(\Pi^{+}\left(\varepsilon_{m}\right)\right)^{2}+\left(\Pi^{+}\left(\varepsilon_{n}\right)\right)^{2}+\left(\Pi^{+}\left(\varepsilon_{h}\right)\right)^{2} \leq 1$
Example 4.2.Let $\mathbb{N}=\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{6}, \mathrm{~L}_{7}, \mathrm{~L}_{8}\right\}$ be the universe set and Π be the congruence relation on $\mathbb{\aleph}$. The equivalence classes of \mathcal{N} are defined by
$\kappa / \Pi=\left\{\left\{\mathrm{L}_{1}, \mathrm{~L}_{6}, \mathrm{~L}_{8}\right\},\left\{\mathrm{L}_{2}\right\},\left\{\mathrm{L}_{3}\right\},\left\{\mathrm{L}_{4}, \mathrm{~L}_{5}, \mathrm{~L}_{7}\right\}\right\}$
Let \mathcal{E} be the $\mathbb{S F}$ set of N defined by

$$
\begin{gathered}
\mathcal{E}_{m}(x)=\left\{\mathrm{L}_{1}=0.5\right. \\
\mathrm{L}_{2}=\mathrm{P}_{7}=0.4 \\
\mathrm{~L}_{3}=\mathrm{P}_{6}=0.8 \\
\mathrm{~L}_{4}=0.6 \\
\mathrm{~L}_{5}=0.7 \\
\mathrm{P}_{8}=0.3 \\
\mathcal{E}_{n}(x)=\left\{\mathrm{L}_{1}=\mathrm{L}_{5}=\mathrm{L}_{8}=0.1\right. \\
\mathrm{L}_{2}=0.6 \mathrm{~L}_{3}=\mathrm{L}_{6}=0.2 \\
\mathrm{~L}_{4}=0.3 \\
\mathrm{~L}_{7}=0.4 \\
\mathcal{E}_{h}(x)=\left\{\mathrm{L}_{1}=0.4\right. \\
\mathrm{L}_{2}=\mathrm{L}_{8}=0.2 \\
\mathrm{~L}_{3}=0.5 \\
\mathrm{~L}_{4}=\mathrm{L}_{6}=0.4 \\
\mathrm{~L}_{5}=0.3 \\
\mathrm{~L}_{7}=0.7
\end{gathered}
$$

Then the lower approximation of \mathcal{E} for all $x \in \mathbb{N}$ is given by

$$
\begin{gathered}
\Pi^{-}\left(\varepsilon_{m}\right)=\left\{\mathrm{L}_{1}=\mathrm{L}_{6}=\mathrm{L}_{8}=0.3\right. \\
\mathrm{L}_{2}=\mathrm{L}_{4}=\mathrm{L}_{5}=\mathrm{L}_{7}=0.4 \\
\mathrm{~L}_{3}=0.8 \\
\Pi^{-}\left(\mathcal{E}_{n}\right)=\left\{\mathrm{L}_{1}=\mathrm{L}_{4}=\mathrm{L}_{5}=\mathrm{L}_{6}=\mathrm{L}_{7}=\mathrm{L}_{8}=0.1\right. \\
\mathrm{L}_{2}=0.6 \\
\mathrm{~L}_{3}=0.2 \\
\Pi^{-}\left(\varepsilon_{h}\right)=\left\{\mathrm{L}_{1}=\mathrm{L}_{6}=\mathrm{L}_{8}=0.6\right. \\
\mathrm{L}_{2}=0.2 \\
\mathrm{~L}_{3}=0.5 \\
\mathrm{~L}_{4}=\mathrm{L}_{5}=\mathrm{L}_{7}=0.7
\end{gathered}
$$

Then the upper approximation of \mathcal{E} for all $x \in \mathcal{N}$ is given by
$\Pi^{+}\left(\mathcal{E}_{m}\right)=\left\{\mathrm{L}_{1}=\mathrm{L}_{3}=\mathrm{L}_{6}=\mathrm{L}_{8}=0.8\right.$
$\mathrm{L}_{2}=0.4$
$\mathrm{L}_{4}=\mathrm{L}_{5}=\mathrm{L}_{7}=0.7$
$\Pi^{+}\left(\mathcal{E}_{n}\right)=\left\{\mathrm{L}_{1}=\mathrm{L}_{3}=\mathrm{L}_{6}=\mathrm{L}_{8}=0.2\right.$

$$
\begin{gathered}
\mathrm{L}_{2}=0.6 \\
\mathrm{~L}_{4}=\mathrm{L}_{5}=\mathrm{L}_{7}=0.4 \\
\Pi^{+}\left(\varepsilon_{h}\right)=\left\{\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{6}=\mathrm{L}_{8}=0.2\right. \\
\mathrm{L}_{3}=0.5 \\
\mathrm{~L}_{4}=\mathrm{L}_{5}=\mathrm{L}_{7}=0.5
\end{gathered}
$$

Then $\Pi(\mathcal{E})=\left(\Pi^{-}(\mathcal{E}), \Pi^{+}(\mathcal{E})\right)$ is a $\mathbb{R S F}$ set of \aleph
Example 4.3. Let $\mathcal{X}=\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}, \mathrm{P}_{6}, \mathrm{P}_{7}, \mathrm{P}_{8}\right\}$ be the universe set and Π be the congruence relation on \aleph. The equivalence classes of \mathcal{N} are defined by
$\kappa / \Pi=\left\{\left\{\mathrm{P}_{1}, \mathrm{P}_{4}\right\},\left\{\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{6}\right\},\left\{\mathrm{P}_{5}\right\},\left\{\mathrm{P}_{7}, \mathrm{P}_{8}\right\}\right\}$
Let \mathcal{E} be the $\mathbb{S F}$ set of N defined by

$$
\begin{gathered}
\mathcal{E}_{m}(x)=\left\{\mathrm{P}_{1}=0.2\right. \\
\mathrm{P}_{2}=0.5 \\
\mathrm{P}_{3}=\mathrm{P}_{8}=0.3 \\
\mathrm{P}_{4}=\mathrm{P}_{6}=0.3 \\
\mathrm{P}_{5}=\mathrm{P}_{7}=0.4 \\
\mathcal{E}_{n}(x)=\left\{\mathrm{P}_{1}=0.2\right. \\
\mathrm{P}_{2}=\mathrm{P}_{6}=\mathrm{P}_{8}=0.4 \\
\mathrm{P}_{3}=0.2 \\
\mathrm{P}_{4}=0.3 \\
\mathrm{P}_{5}=0.5 \\
\mathrm{P}_{7}=0.7 \\
\mathcal{E}_{h}(x)=\left\{\mathrm{P}_{1}=\mathrm{P}_{3}=0.4\right. \\
\mathrm{P}_{2}=0.7 \\
\mathrm{P}_{4}=0.2 \\
\mathrm{P}_{5}=\mathrm{P}_{7}=0.5 \\
\mathrm{P}_{6}=0.3 \\
\mathrm{P}_{8}=0.8
\end{gathered}
$$

Then the lower approximation of \mathcal{E} for all $x \in \mathbb{N}$ is given by
$\Pi^{-}\left(\mathcal{E}_{m}\right)=\left\{\mathrm{P}_{1}=\mathrm{P}_{4}=0.2\right.$

$$
\mathrm{P}_{5}=0.4
$$

$$
\mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{P}_{6}=\mathrm{P}_{7}=\mathrm{P}_{8}=0.3
$$

$\Pi^{-}\left(\varepsilon_{n}\right)=\left\{\mathrm{P}_{1}=\mathrm{P}_{4}=0.1\right.$

$$
\mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{P}_{6}=0.2
$$

$$
\mathrm{P}_{5}=0.5
$$

$$
\mathrm{P}_{7}=\mathrm{P}_{8}=0.4
$$

$\Pi^{-}\left(\mathcal{E}_{h}\right)=\left\{\mathrm{P}_{1}=\mathrm{P}_{4}=0.4\right.$

$$
\mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{P}_{6}=0.7
$$

$$
P_{5}=0.5
$$

$$
\mathrm{P}_{7}=\mathrm{P}_{8}=0.8
$$

Then the upper approximation of \mathcal{E} for all $x \in \mathcal{N}$ is given by
$\Pi^{+}\left(\mathcal{E}_{m}\right)=\left\{\mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{P}_{4}=\mathrm{P}_{6}=0.6\right.$

$$
\begin{aligned}
& \mathrm{P}_{5}=\mathrm{P}_{7}=\mathrm{P}_{8}=0.4 \\
& \Pi^{+}\left(\varepsilon_{n}\right)=\left\{\mathrm{P}_{1}\right.=\mathrm{P}_{4}=0.3 \\
& \mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{P}_{6}=0.4 \\
& \mathrm{P}_{5}=0.5 \\
& \mathrm{P}_{7}=\mathrm{P}_{8}=0.7 \\
& \Pi^{+}\left(\varepsilon_{h}\right)=\left\{\mathrm{P}_{1}=\mathrm{P}_{4}=0.2\right. \\
& \mathrm{P}_{2}=\mathrm{P}_{3}=\mathrm{P}_{6}=0.3 \\
& \mathrm{P}_{5}=\mathrm{P}_{7}=\mathrm{P}_{8}=0.5
\end{aligned}
$$

Then $\Pi(\mathcal{E})=\left(\Pi^{-}(\mathcal{E}), \Pi^{+}(\mathcal{E})\right)$ is a $\mathbb{R S F}$ set of κ
Definition 4.4. A $\mathbb{S F B I}$ of \mathcal{N} is said to be a $\mathbb{R S F} B I$ of \mathcal{N} if it is both Π-lower $\mathbb{R S F} B I$ and Π upper $\mathbb{R S F} B I$ of \aleph.
A $\mathbb{S F} B I$ of \mathcal{N} is called a Π-lower (upper) $\mathbb{R S F} B I$ of \mathcal{N} if its lower(upper) approximation is $\mathbb{S F B I}$ of N .
Example 4.5. Let $\mathbb{K}=\left\{\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}\right\}$ be a near-ring with the following multiplication table.
Table 3

+	Z_{0}	Z_{1}	Z_{2}
Z_{0}	Z_{0}	Z_{1}	Z_{2}
Z_{1}	Z_{1}	Z_{2}	Z_{0}
Z_{2}	Z_{2}	Z_{1}	Z_{0}

Table 4

\cdot	Z_{0}	Z_{1}	Z_{2}
Z_{0}	Z_{0}	Z_{0}	Z_{0}
Z_{1}	Z_{0}	Z_{1}	Z_{2}
Z_{2}	Z_{0}	Z_{2}	Z_{1}

Let Υ be the congruence relation on \aleph. The equivalence classes of \aleph are defined by $\kappa / \Upsilon=\left\{\left\{\mathrm{z}_{0}\right\},\left\{\mathrm{z}_{1}, \mathrm{z}_{2}\right\}\right\}$
Let \mathcal{E} be a $\mathbb{S F}$ set of \mathbb{N} defined by
$\varepsilon_{m}\left(\mathrm{z}_{0}\right)=\mathcal{E}_{m}\left(\mathrm{z}_{1}\right)=\mathcal{E}_{m}\left(\mathrm{z}_{2}\right)=0.2$
$\mathcal{E}_{n}\left(\mathrm{z}_{0}\right)=0.5, \varepsilon_{n}\left(\mathrm{z}_{1}\right)=\varepsilon_{n}\left(\mathrm{z}_{2}\right)=0.4$
$\mathcal{E}_{h}\left(\mathrm{z}_{1}\right)=0.5, \mathcal{E}_{h}\left(\mathrm{z}_{0}\right)=\varepsilon_{h}\left(\mathrm{z}_{2}\right)=0.3$
Then the lower approximation of \mathcal{E} is
$\underline{\Pi}\left(\varepsilon_{m}\right)\left(\mathrm{z}_{0}\right)=\underline{\Pi}\left(\varepsilon_{m}\right)\left(\mathrm{z}_{1}\right)=\underline{\Pi}\left(\varepsilon_{m}\right)\left(\mathrm{z}_{2}\right)=0.2$
$\underline{\Pi}\left(\mathcal{E}_{n}\left(\mathrm{z}_{0}\right)=0.5, \underline{\Pi} \mathcal{E}_{n}\left(\mathrm{z}_{1}\right)=\underline{\Pi}\left(\mathcal{E}_{n}\left(\mathrm{z}_{1}\right)=0.4\right.\right.$
$\underline{\Pi}\left(\varepsilon_{h}\left(\mathrm{z}_{1}\right)=0.3, \underline{\Pi}\left(\varepsilon_{h}\left(\mathrm{z}_{1}\right)=\underline{\Pi}\left(\mathcal{E}_{h}\left(\mathrm{z}_{1}\right)=0.5\right.\right.\right.$
Then the upper approximation of \mathcal{E} is
$\bar{\Pi}\left(\varepsilon_{m}\right)\left(\mathrm{z}_{0}\right)=\bar{\Pi}\left(\varepsilon_{m}\right)\left(\mathrm{z}_{1}\right)=\bar{\Pi}\left(\varepsilon_{m}\right)\left(\mathrm{z}_{2}\right)=0.2$
$\bar{\Pi}\left(\varepsilon_{n}\right)\left(\mathrm{z}_{0}\right)=0.5, \bar{\Pi}\left(\varepsilon_{n}\right)\left(\mathrm{z}_{1}\right)=\bar{\Pi}\left(\varepsilon_{n}\right)\left(\mathrm{z}_{1}\right)=0.4$
$\bar{\Pi}\left(\varepsilon_{h}\right)\left(\mathrm{z}_{0}\right)=\bar{\Pi}\left(\varepsilon_{n}\right)\left(\mathrm{z}_{1}\right)=\bar{\Pi}\left(\varepsilon_{n}\right)\left(\mathrm{z}_{1}\right)=0.3$
then $\underline{\Pi}(\mathcal{E})$ and $\bar{\Pi}(\mathcal{\varepsilon})$ are $\mathbb{S F B I}$ of \mathcal{N}. hence \mathcal{E} is a $\mathbb{R S F B I}$ of \mathcal{N}
Theorem 4.6. Let \mathcal{E} be a $\mathbb{S F B I}$ of \aleph. Then \mathcal{E} be a $\mathbb{R S F B I}$ of \mathcal{N}

Proof : Assume that \mathcal{E} be a $\mathbb{S F B I}$ of \mathbb{N}. we want to prove \mathcal{E} is $\mathbb{R S F B I}$. For that we have to prove
$\Pi^{-}(\mathcal{E})$ and $\Pi^{+}(\mathcal{E})$ are $\mathbb{S F B I}$ of \aleph. Let $\mathrm{i}, \mathrm{j}, \mathrm{p} \in \mathbb{\aleph}$
Then we consider

$$
\begin{aligned}
\Pi^{-}\left(\varepsilon_{m}\right)(i-j) & =\Lambda_{s \in[i-j]_{\Pi}} \varepsilon_{m}(\mathrm{~s}) \\
& =\Lambda_{s \in[i]_{\Pi}+[-j]_{\Pi}} \varepsilon_{m}(\mathrm{~s}) \\
& =\Lambda_{k-q \in[i]_{\Pi}+[-j]_{\Pi}} \varepsilon_{m}(k-q) \\
& =\Lambda_{k \in[i]_{\Pi}, q \in[-j]_{\Pi}} \varepsilon_{m}(k) \wedge \varepsilon_{m}(q) \\
& =\left(\Lambda_{k \in[i]_{\Pi}} \varepsilon_{m}(k)\right) \wedge\left(\Lambda_{q \in[-j]_{\Pi}} \varepsilon_{m}(q)\right) \\
& =\Pi^{-}\left(\varepsilon_{m}\right)(\mathrm{i}) \wedge \Pi^{-}\left(\varepsilon_{m}\right)(-\mathrm{j})
\end{aligned}
$$

$\geq \Pi^{-}\left(\mathcal{E}_{m}\right)(\mathrm{i}) \wedge \Pi^{-}\left(\mathcal{E}_{m}\right)(\mathrm{j})$
Moreover
$\Pi^{-}\left(\mathcal{E}_{m}\right)(i j k)=\Lambda_{s \in[i j k]_{\Pi}} \mathcal{E}_{m}(\mathrm{~s})$

$$
=\Lambda_{s \in[i]_{\Pi}\left[j j_{\Pi}[k]_{\Pi}\right.} \mathcal{E}_{m}(\mathrm{~s})
$$

$$
=\Lambda_{p q r \in[i]_{\Pi}[j]_{\Pi}[k]_{\Pi}} \mathcal{E}_{m}(p q r)
$$

$\geq \Lambda_{p \in[i]_{\Pi} r \in[k]_{\Pi}} \min \left\{\mathcal{E}_{m}(p), \mathcal{E}_{m}(\mathrm{r})\right\}$
$=\min \left\{\Lambda_{p \in[i]_{\Pi}} \mathcal{E}_{m}(p), \wedge_{r \in[k]} \mathcal{E}_{m}(r)\right\}$

$$
\min \left\{\Pi^{-}\left(\varepsilon_{m}\right)(\mathrm{i}), \Pi^{-}\left(\varepsilon_{m}\right)(\mathrm{k})\right\}
$$

similarly we can prove the other case
$\Pi^{-}\left(\varepsilon_{n}\right)(i-j) \geq \Pi^{-}\left(\varepsilon_{n}\right)(\mathrm{i}) \wedge \Pi^{-}\left(\varepsilon_{n}\right)(\mathrm{j})$
$\Pi^{-}\left(\mathcal{E}_{n}\right)(i j k) \geq \min \left\{\Pi^{-}\left(\mathcal{E}_{n}\right)(\mathrm{i}), \Pi^{-}\left(\mathcal{E}_{n}\right)(\mathrm{k})\right\}$
and
$\Pi^{-}\left(\varepsilon_{h}\right)(i-j) \geq \Pi^{-}\left(\varepsilon_{h}\right)(\mathrm{i}) \wedge \Pi^{-}\left(\varepsilon_{h}\right)(\mathrm{j})$
$\Pi^{-}\left(\varepsilon_{h}\right)(i j k) \geq \min \left\{\Pi^{-}\left(\mathcal{E}_{h}\right)(\mathrm{i}), \Pi^{-}\left(\mathcal{E}_{h}\right)(\mathrm{k})\right\}$
Hence $\Pi^{-}(\mathcal{E})$ is $\mathbb{S F B I}$ of \mathcal{N}. consequently we can prove $\Pi^{+}(\mathcal{E})$ is $\mathbb{S F B I}$ of \mathcal{N}. Thus \mathcal{E} is a $\mathbb{R S F B I}$ of \aleph.
Theorem 4.7. If \mathcal{E} and \mathcal{F} are $\mathbb{R S} \mathbb{F} B I$ of \mathcal{N}. Then $\mathcal{E} \cap \mathcal{F}$ is $\mathbb{R S F B I}$ of \mathcal{N}.
Proof. Since \mathcal{E} and \mathcal{F} are $\mathbb{R S} \mathbb{F} B I$ of \mathcal{N}. Then for all $\mathrm{i}, \mathrm{j} \in \mathcal{N}$ we consider

$$
\begin{aligned}
& \left(\Pi^{-}\left(\varepsilon_{m}\right) \cap \Pi^{-}\left(\mathcal{F}_{m}\right)\right)(\mathrm{i}-\mathrm{j}) \\
& \quad=\left(\Pi^{-}\left(\mathcal{F}_{m}\right)\right)(\mathrm{i}-\mathrm{j}) \Lambda\left(\Pi^{-}\left(\mathcal{E}_{m}\right)(i-j)\right) \\
& \geq\left(\Pi^{-}\left(\mathcal{E}_{m}\right)(i) \Lambda \Pi^{-}\left(\mathcal{E}_{m}\right)(j)\right) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{m}\right)(i) \Lambda \Pi^{-}\left(\mathcal{F}_{m}\right)(j)\right) \\
& \quad=\left(\Pi^{-}\left(\varepsilon_{m}\right)(i) \Lambda \Pi^{-}\left(\mathcal{F}_{m}\right)(i)\right) \Lambda\left(\Pi^{-}\left(\varepsilon_{m}\right)(j) \Lambda \Pi^{-}\left(\mathcal{F}_{m}\right)(j)\right) \\
& \quad \geq\left(\Pi^{-}\left(\mathcal{E}_{m}\right) \cap\left(\mathcal{F}_{m}\right)\right)(i) \wedge\left(\Pi^{-}\left(\mathcal{E}_{m}\right) \cap\left(\mathcal{F}_{m}\right)\right)(j)
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \left(\Pi^{-}\left(\varepsilon_{m}\right) \cap \Pi^{-}\left(\mathcal{F}_{m}\right)\right)(\mathrm{ijk}) \\
& \quad=\left(\Pi^{-}\left(\mathcal{E}_{m}\right)\right)(\mathrm{ijk}) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{m}\right)(i j k)\right) \\
& \geq\left(\Pi^{-}\left(\varepsilon_{m}\right)(i) \Lambda \Pi^{-}\left(\varepsilon_{m}\right)(k)\right) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{m}\right)(i) \Lambda \Pi^{-}\left(\mathcal{F}_{m}\right)(k)\right) \\
& \quad \geq\left(\Pi^{-}\left(\mathcal{E}_{m}\right) \cap\left(\mathcal{F}_{m}\right)\right)(i) \wedge\left(\Pi^{-}\left(\mathcal{E}_{m}\right) \cap\left(\mathcal{F}_{m}\right)\right)(k)
\end{aligned}
$$

For nonmembership function
$\left(\Pi^{-}\left(\mathcal{E}_{n}\right) \cap \Pi^{-}\left(\mathcal{F}_{n}\right)\right)(\mathrm{i}-\mathrm{j})$

$$
\begin{gathered}
\quad=\left(\Pi^{-}\left(\mathcal{F}_{n}\right)\right)(\mathrm{i}-\mathrm{j}) \Lambda\left(\Pi^{-}\left(\mathcal{E}_{n}\right)(i-j)\right) \\
\geq\left(\Pi^{-}\left(\mathcal{E}_{n}\right)(i) \Lambda \Pi^{-}\left(\mathcal{E}_{n}\right)(j)\right) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{n}\right)(i) \Lambda \Pi^{-}\left(\mathcal{F}_{n}\right)(j)\right) \\
\quad=\left(\Pi^{-}\left(\mathcal{E}_{n}\right)(i) \Lambda \Pi^{-}\left(\mathcal{F}_{n}\right)(i)\right) \Lambda\left(\Pi^{-}\left(\mathcal{E}_{n}\right)(j) \Lambda \Pi^{-}\left(\mathcal{F}_{n}\right)(j)\right) \\
\quad \geq\left(\Pi^{-}\left(\varepsilon_{n}\right) \cap\left(\mathcal{F}_{n}\right)\right)(i) \wedge\left(\Pi^{-}\left(\varepsilon_{n}\right) \cap\left(\mathcal{F}_{n}\right)\right)(j)
\end{gathered}
$$

Also

$$
\begin{aligned}
& \left(\Pi^{-}\left(\mathcal{E}_{n}\right) \cap \Pi^{-}\left(\mathcal{F}_{n}\right)\right)(\mathrm{ijk}) \\
& \quad=\left(\Pi^{-}\left(\mathcal{E}_{n}\right)\right)(\mathrm{ijk}) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{n}\right)(i j k)\right) \\
& \geq\left(\Pi^{-}\left(\mathcal{E}_{n}\right)(i) \Lambda \Pi^{-}\left(\mathcal{E}_{n}\right)(k)\right) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{n}\right)(i) \Lambda \Pi^{-}\left(\mathcal{F}_{n}\right)(k)\right) \\
& \quad \geq\left(\Pi^{-}\left(\mathcal{E}_{n}\right) \cap\left(\mathcal{F}_{n}\right)\right)(i) \wedge\left(\Pi^{-}\left(\mathcal{E}_{n}\right) \cap\left(\mathcal{F}_{n}\right)\right)(k)
\end{aligned}
$$

Finally for hesitancy function

$$
\begin{aligned}
& \left(\Pi^{-}\left(\mathcal{E}_{h}\right) \cap \Pi^{-}\left(\mathcal{F}_{h}\right)\right)(\mathrm{i}-\mathrm{j}) \\
& \quad=\left(\Pi^{-}\left(\mathcal{E}_{h}\right)\right)(\mathrm{i}-\mathrm{j}) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{h}\right)(i-j)\right) \\
& \geq\left(\Pi^{-}\left(\mathcal{E}_{h}\right)(i) \vee \Pi^{-}\left(\mathcal{E}_{h}\right)(j)\right) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{h}\right)(i) \vee \Pi^{-}\left(\mathcal{F}_{h}\right)(j)\right) \\
& \quad=\left(\Pi^{-}\left(\mathcal{E}_{h}\right)(i) \Lambda \Pi^{-}\left(\mathcal{F}_{h}\right)(i)\right) \vee\left(\Pi^{-}\left(\mathcal{E}_{h}\right)(j) \Lambda \Pi^{-}\left(\mathcal{F}_{h}\right)(j)\right) \\
& \quad \geq\left(\Pi^{-}\left(\mathcal{E}_{h}\right) \cap\left(\mathcal{F}_{h}\right)\right)(i) \vee\left(\Pi^{-}\left(\mathcal{E}_{h}\right) \cap\left(\mathcal{F}_{h}\right)\right)(j)
\end{aligned}
$$

Also

$$
\begin{aligned}
& \left(\Pi^{-}\left(\mathcal{E}_{h}\right) \cap \Pi^{-}\left(\mathcal{F}_{h}\right)\right)(\mathrm{ijk}) \\
& \quad=\left(\Pi^{-}\left(\varepsilon_{h}\right)\right)(\mathrm{ijk}) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{h}\right)(i j k)\right) \\
& \geq\left(\Pi^{-}\left(\varepsilon_{h}\right)(i) \vee \Pi^{-}\left(\varepsilon_{h}\right)(k)\right) \Lambda\left(\Pi^{-}\left(\mathcal{F}_{h}\right)(i) \vee \Pi^{-}\left(\mathcal{F}_{h}\right)(k)\right) \\
& \geq\left(\Pi^{-}\left(\varepsilon_{h}\right) \cap\left(\mathcal{F}_{h}\right)\right)(i) \vee\left(\Pi^{-}\left(\varepsilon_{h}\right) \cap\left(\mathcal{F}_{h}\right)\right)(k)
\end{aligned}
$$

Therefore $\Pi^{-}\left(\mathcal{E}_{m}\right) \cap \Pi^{-}\left(\mathcal{F}_{m}\right)$ is $\mathbb{S F B I}$ of \aleph. Similarly we can prove for $\Pi^{+}\left(\mathcal{E}_{m}\right) \cap$ $\Pi^{+}\left(\mathcal{F}_{m}\right)$.Consequently we prove for the remaining cases .Hence $\mathcal{E} \cap \mathcal{F}$ is $\mathbb{R S F B I}$ of \mathcal{N}.

5.CONCLUSION

Spherical fuzzy sets are an attempt to provide a general view to three dimensional fuzzy sets. To investigate the structure of an algebraic system, we see that the spherical fuzzy ideals on near ring with special properties always play a central role. The purpose of this paper is to initiated the concept of spherical fuzzy bi-ideals and rough spherical fuzzy bi-ideals on near rings. Some characterizations of rough spherical fuzzy bi-ideals are obtained on near ring. Our future work is to extend this idea to other algebraic domain such as semi hyper near ring, semigroup etc.

6.REFERENCES

[1] Attanassov. K, Intuitionistic fuzzy sets, Fuzzy sets and system, 20 (1986) 87-96.
[2] Cuong BC (2014) Picture fuzzy sets. J Comput Sci CyberneIcs 30(4):409-420.
[3] Dubois D and Prade H, Rough fuzzy sets and fuzzy rough sets, International Journal of General

Systems, 17, (1990), 191-209.
[4] Davvaz. B, roughness in rings, Information Sciences, 164(2004),147-163.
[5] Gundogdu. F.K. and Kahraman. C, Properties and Arithmetic Operations of spherical fuzzy subsets,
Studies in Fuzziness and Soft Computing, (2018), 3-25.
[6] Gundogdu. F.K. and Kahraman. C (2019a) A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Comput.
[7] Kazanci.O and Davvaz. B On the structure of rough prime (primary) ideals and rough fuzzy prime
(primary)ideals in commutative rings , Information Sciences, 178(5), (2008), 1343-1354.
[8] Kuroki. N, Rough ideals in semigroups, Information Sciences, 100(1-4), (1997), 139-163.
[9] Pawlak. Z, Rough sets, Int.J.Inform.comput science, 11(1982), 341-356.
[10] Smarandache. F, A Unifying Field in Logics. ProQuest, Ann Arbor, Michigan, USA. 1998, 1-141.
[11] Shahzaib Ashraf, Saleem Abdullah, Muhammad Aslam, Muhammad Qiyas and Marwan A. Kutbi, Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms, Journal of Inteligent and Fuzzy sytems, 36(2019)6089-6102
[12] Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529-539
[13] Yager RR (2013) Pythagorean fuzzy subsets. In: 2013 joint IFSA world congress and NAFIPSannualmeeting (IFSA/NAFIPS). IEEE, pp 57-61
[14] Zadeh. L. A, Fuzzy sets. Inform and control. 8 (1965) 338-353.
[15] Zadeh. L. A (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(3):199-249

