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ABSTRACT  
This paper studies relationship between spherical fuzzy set, rough set and near ring. We define 
spherical fuzzy bi-ideal in near ring and pro-pose rough spherical fuzzy bi-ideal in near 
ring.Investigate some interesting properties of rough spherical fuzzy bi-ideal. 
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1.INTRODUCTION 
Fuzzy [14] sets have a great progress in every scientific research area. After the introduction 
of ordinary fuzzy sets, new extensions have appeared one by one in the literature. Among these 
extensions, picture fuzzy sets [2], neutrosophic sets [10] and spherical fuzzy sets [5] are the 
members of the same class since any element in these sets is represented by a membership 
degree, a non-membership degree and a hesitancy degree assigned by independently. Spherical 
fuzzy sets have been proposed by Gundogdu and Kahraman [5]. The notion of rough sets was 
introduced by Pawlak [9] in the year 1982. The algebraic approach of rough sets was studied 
by many researchers. The basic idea of rough set is based upon the approximation of sets by a 
pair of sets known as the lower approximation and the upper approximation of a set. The lower 
and upper approximation operators are based on equivalence relation. The rest of the paper is 
organized as follows: Section 2 is full of information about the basics . In Section 3, we 
introduced the spherical fuzzy bi-ideal in near ring and discussed some interesting properties. 
At last in section 4 we combine rough set and spherical fuzzy set. Also we define rough 
spherical fuzzy bi-ideal in near ring.  
 
2.PRELIMINARIES 
We review some definitions that will be useful in our results. Throughout this paper let us 
denote ℵ as near ring. Let Π be an equivalence relation on ℵ. A congruence relation Π on S is 
said to be complete if [a]Π[b]Π = [ab]Π.  
Let (ℵ, Π) be an  approximation space. Let A be any nonempty subset of ℵ. The sets  
                                      Π−(A) = {x ∈ ℵ/[x]Π⊆ A} and  
                                      Π+(A) = {x ∈ ℵ/[x]Π ∩ A ≠ φ} 
 are called the lower and upper approximations of A. Then Π(A) = (Π−(A), Π+(A)) is called 
rough set in (S, Π), iff Π−(A) ≠ Π+(A). A fuzzy subset of a nonempty set X is defined as a 
function β : X → [0, 1] Let Λ be a fuzzy subset of ℵ. The fuzzy subsets of ℵ defined by    
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                          Π+(Λ)(x) = ⋁ Λ(a∈[ ]  
)   and      Π−(Λ)(x) =⋀ Λ(a) ∈[ ]  

 

 are called respectively, the Π-upper and Π-lower approximations of the fuzzy set Λ.  
Then Π(Λ) = (Π−(Λ), Π+(Λ)) is called a rough fuzzy set of Λ with respect to Π if Π−(Λ) ≠ 
Π+(Λ). 
Definition 2.1. [1] An intuitionistic fuzzy set defined on ℵ is an object having the form  
I = (〈𝑖, 𝐼 (𝑖), 𝐼  (𝑖)〉: i ∈ ℵ)  
of each element i∈ ℵ to the set I respectively, and satisfies  
                               0 ≤ 𝐼  + In ≤ 1.  
Definition 2.2. [6] Let  be  ℰ  the  SF set of the universe of U is defined by                                             
ℰ = {l,〈ℇ (𝑙), ℇ (𝑙) , ℇ (𝑙)〉} 
 Where  ℇ (𝑙) : U → [0, 1], ℇ (𝑙) : U → [0, 1], ℇ (𝑙): U → [0, 1] and   

                            0 ≤ ℇ (𝑙) + ℇ (𝑙) + ℇ (𝑙) ≤ 1 for every l∈ U  
for each l, the numbers ℇ (𝑙), ℇ (𝑙)and ℇ (𝑙) are the degree of membership, non membership 
and hesitancy of l to ℇ, respectively. 
Example 2.3. Let ℵ = {p, q, r, s} be the universe. A SF set ℇ of ℵ is defined by ℇ (𝑖) = {0.6, 
0.4, 0.2, 0.4}, ℇ (𝑖)= {0.6, 0.5, 0.3, 0.6} and ℇ (𝑖) = {0.3, 0.4, 0.5, 0.1} where i = p, q, r, s. 
 
3. SPHERICAL FUZZY BI-IDEAL (SFBI) IN NEAR RINGS 
This section deals with notion ofSFBI in near-ring ℵ. Also we prove the intersection of two 
SFBI is also a SFBI in near ring ℵ. 
Definition 3.1. A SF set ℰ = 〈ℇ (𝑙), ℇ (𝑙) , ℇ (𝑙)〉in ℵ is called a SFBI of ℵ if the resulting 
conditions are true:  
  (1)ℇ  (i − j) ≥ ℇ  (i) ∧ℇ  (j)  
ℇ  (i − j) ≥ ℇ  (i) ∧ℇ  (j) 
ℇ  (i − j) ≤ ℇ  (i) ∨ℇ  (j)  
(2)ℇ  (ijk) ≥ ℇ  (i) ∧ℇ  (k)  
ℇ  (ijk) ≥ ℇ  (i) ∧ℇ  (k)  
ℇ  (ijk) ≤ ℇ  (i) ∨ℇ (k) for all i, j, k ∈ℵ 
Example 3.2. Let ℵ = {z0, z1, z2, z3} be a near-ring with the following multiplication table 
TABLE 1 

+ 𝑧  𝑧  𝑧  𝑧  

𝑧  𝑧  𝑧  𝑧  𝑧  

𝑧  𝑧  𝑧  𝑧  𝑧  

𝑧  𝑧  𝑧  𝑧  𝑧  

𝑧  𝑧  𝑧  𝑧  𝑧  
 
TABLE 2 

∙ 𝑧  𝑧  𝑧  𝑧  

𝑧  𝑧  𝑧  𝑧  𝑧  

𝑧  𝑧  𝑧  𝑧  𝑧  
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Let ℰ be a SF set of ℵ defined by,  
ℇ  (z0) = ℇ  (z1) = ℇ  (z1) = ℇ  (z2) = 0.3  
ℇ  (z0) = ℇ  (z2) = 0.6 , ℇ  (z1) = ℇ  (z3) = 0.5  
ℇ  (z0) = 0.4 , ℇ  (z1) = ℇ  (z2) = ℇ  (z3) = 0.6 
Then ℇ is a SFBI of ℵ 
Theorem 3.3. Let ℒ = 〈ℒ , ℒ , ℒ 〉 and 𝒦= 〈𝒦 , 𝒦 , 𝒦 〉are two 𝕊𝔽BIs of ℵ. If ℒ⊂𝒦 then ℒ 
∩ 𝒦 is S𝕊𝔽BI of ℵ 
Proof. Since ℒ and 𝒦 are two  SFBIs of ℵ. Let i, j, k ∈ ℵ. Then we first prove for membership 
function  
(ℒ ∩ 𝒦 )(i − j) = ℒ (i − j) ∧𝒦  (i − j)  
                             ≥ (ℒ (i) ∧ℒ  (j)) ∧ (𝒦  (i) ∧𝒦  (j)) 
                             = (ℒ  (i) ∧𝒦  (i)) ∧ (ℒ  (j) ∨𝒦  (j)) 
                             = (ℒ  ∩ 𝒦 ) (i) ∧ (ℒ  ∩ 𝒦 ) (j) 
Also 
(ℒ  ∩ 𝒦 )(ijk) = ℒ  (ijk) ∧𝒦  (ijk)  
                           ≥ (ℒ  (i) ∧ℒ  (k)) ∧ (𝒦  (i) ∧𝒦  (k))  
                          = (ℒ  (i) ∧𝒦  (i)) ∧ (ℒ  (k) ∨𝒦  (k))  
                          = (ℒ  ∩ 𝒦 ) (i) ∧ (ℒ  ∩ 𝒦 ) (k) 
Consequently we can prove for non-membership function  
(ℒ  ∩ 𝒦 )(i − j) ≥ (ℒ  ∩ 𝒦 ) (i) ∧ (ℒ ∩ 𝒦 ) (j)  
(ℒ  ∩ 𝒦 )(ijk) ≥ (ℒ  ∩ 𝒦 ) (i) ∧ (ℒ  ∩ 𝒦 ) (k) 
Similarly we can prove for hesitancy function  
(ℒ  ∩ 𝒦 )(i − j) ≤ (ℒ  ∩ 𝒦 ) (i) ∨ (ℒ ∩ 𝒦 ) (j)  
(ℒ  ∩ 𝒦 )(ijk) ≤ (ℒ  ∩ 𝒦 ) (i) ∧ (ℒ  ∩ 𝒦 ) (k)  
Thus intersection of two 𝕊𝔽BI is 𝕊𝔽BI 
Theorem 3.4 Arbitrary intersection of 𝕊𝔽BI is also 𝕊𝔽BI. 

Proof. Let {𝒫 = 〈𝒫 , 𝒫 , 𝒫 〉, i∈ I} be a family of 𝕊𝔽BI  of ℵ.  
For any α, β, γ ∈ ℵ. We have 

⋂ 𝒫 (k)= ⋂ 𝒫 (k), ⋂ 𝒫 (k)= ⋂ 𝒫 (k), ⋂ 𝒫 (k)= ⋂ 𝒫 (k)  

consider⋂ 𝒫 (𝛼 − 𝛽) = 𝑖𝑛𝑓 𝒫 (𝛼 − 𝛽) 

≥ 𝑖𝑛𝑓 (𝒫 (𝛼)Λ𝒫 (𝛽) 

                                          =𝑖𝑛𝑓 (𝒫 (𝛼) Λ𝑖𝑛𝑓 𝒫 (𝛽) 

                                          =⋂ 𝒫 (𝛼) Λ ⋂ 𝒫 (𝛽) 

Also ⋂ 𝒫 (𝛼𝑗𝛽)=𝑖𝑛𝑓 𝒫 (𝛼𝑗𝛽) 

≥ 𝑖𝑛𝑓 (𝒫 (𝛼)Λ𝒫 (𝛽) 

                               =𝑖𝑛𝑓 (𝒫 (𝛼) Λ𝑖𝑛𝑓 𝒫 (𝛽) 

                                =⋂ 𝒫 (𝛼) Λ ⋂ 𝒫 (𝛽) 

𝑧  𝑧  𝑧  𝑧  𝑧  

𝑧  𝑧  𝑧  𝑧  𝑧  
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Consequently we can prove for 

𝒫 (𝛼 − 𝛽) ≥ 𝑖𝑛𝑓 𝒫 (𝛼) Λ𝑖𝑛𝑓 𝒫 (𝛽) 

𝒫 (𝛼 − 𝛽) ≤ 𝑖𝑛𝑓 𝒫 (𝛼) Λ𝑖𝑛𝑓 𝒫 (𝛽) 

And  

𝒫 (𝛼𝑗𝛽) ≥ 𝒫 (𝛼) Λ 𝒫 (𝛽) 

𝒫 (𝛼𝑗𝛽) ≤ 𝒫 (𝛼) Λ 𝒫 (𝛽) 

Definition 3.5. Let Θ be a mappings from a set A to B and ℱ be a 𝕊𝔽 on B. Then the preimage 
of ℱ under Θ denoted by Θ−1 (ℱ (x)) is defined by 
 Θ−1 (ℱ  (x)) = ℱ  (Θ(x)), Θ−1 (ℱ  (x)) = ℱ  (Θ(x)) and Θ−1 (ℱ  (x)) = ℱ  (Θ(x)) for all x ∈ 
ℵ.     
Theorem 3.6. If Θ : 𝔄 −→ 𝔅 be an onto homomorphism of ℵ. Let 𝔓 be a 𝕊𝔽 of B then Θ−1 
(𝔓) is a 𝕊𝔽BI of A.  
Proof : Let 𝛼, 𝛽𝜖𝔄. Then 
Θ−1( 𝔓 )(𝛼 − 𝛽) =  𝔓 (Θ(𝛼 − 𝛽)) 
                              = 𝔓 (Θ(𝛼)−Θ(𝛽)) 

≥ 𝑚𝑖𝑛{ 𝔓 (Θ(𝛼)),  𝔓 (Θ(𝛽))} 
                              = 𝑚𝑖𝑛{Θ ( 𝔓 )(𝛼), Θ ( 𝔓 )(𝛽)} 
Also 
Θ ( 𝔓 )(𝛼𝑘𝛽) =  𝔓 (Θ(𝛼𝑘𝛽))  
                             =  𝔓 (Θ(𝛼)Θ(𝑘)Θ(𝛽)) 

≥ 𝑚𝑖𝑛{ 𝔓 (Θ(𝛼)),  𝔓 (Θ(𝛽))} 
                             = 𝑚𝑖𝑛{Θ ( 𝔓 )(𝛼), Θ ( 𝔓 )(𝛽)} 
Hence proved 
 
4.ROUGH SPERICAL FUZZY BI-IDEALS(ℝ𝕊𝔽BI) IN NEAR -RINGS 
In this section we introduce the new idea ℝ𝕊𝔽BI in near ring ℵ. Throughout this section let us 
denote Π the complete congruence relation on ℵ. 
Definition 4.1. Let ℰ = 〈𝑗/ ℰ (𝑗), ℰ (𝑗),  ℰ (𝑗)〉 be a 𝕊𝔽 set in ℵ and Π be a congruence relation 
on ℵ. Then ℝ𝕊𝔽 set of  ℰ with respect to the approximation space (Π, ℵ) is defined by Π(ℰ) = 
(Π−(ℰ), Π+(ℰ)).  
The lower approximation of ℰ is denoted by Π−(ℰ) and defined as 
Π−(ℰ)=〈𝑗, Π ( ℰ )(𝑗), Π ( ℰ )(𝑗), Π ( ℰ )(𝑗)|j ∈  ℵ 〉 
Where  
Π−( ℰ )(l)=⋀  ℰ (s)∈[ ] , Π−( ℰ )(l) =⋀  ℰ (s)∈[ ]  , Π−( ℰ )(l)=⋁  ℰ (𝑠)∈[ ]  

With the condition that  
0≤ (Π−( ℰ ))2+ (Π−( ℰ ))2+ (Π−( ℰ ))2≤ 1 
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and the upper approximation of ℰ is denoted by Π+(ℰ) and defined as 
 Π+(ℰ)=〈𝑗, Π ( ℰ )(𝑗), Π ( ℰ )(𝑗), Π ( ℰ )(𝑗)|j ∈  ℵ 〉 
Π+( ℰ )(l)=⋁  ℰ (𝑠)∈[ ] , Π+( ℰ )(l)=⋀  ℰ (s)∈[ ] , Π+( ℰ )(l)=⋀  ℰ (s)∈[ ]  

With the condition that  
 0≤ (Π+( ℰ ))2+ (Π+( ℰ ))2+ (Π+( ℰ ))2≤ 1 
Example 4.2.Let ℵ = {L 1 , L 2 ,L 3 ,L 4 ,L 5 ,L 6 ,L 7 ,L 8 } be the universe set and Π be the 
congruence relation on ℵ. The equivalence classes of ℵ are defined by 
ℵ/Π = {{L 1, L 6, L 8}, {L 2}, {L 3}, {L 4, L 5, L 7}}  
Let ℰ be the 𝕊𝔽 set of ℵ defined by 
 ℰ (𝑥) ={L1 =0.5 
               L2= P7 = 0.4 
                L3=P6=0.8 
                L4=0.6 
                L5=0.7 
                P8=0.3 
 ℰ (𝑥) = { L1 = L5 = L 8 = 0.1 
                L2 = 0.6 L3 = L6 = 0.2  
               L4 = 0.3  
               L7 = 0.4 
 ℰ (𝑥)={L1 = 0.4 
              L2 = L8 = 0.2  
               L3 = 0.5  
              L4 = L6 = 0.4  
              L5 = 0.3 
             L7 = 0.7 
Then the lower approximation of ℰ  for all x∈ ℵ is given by 
Π−( ℰ )={L1=L6 =L8 =0.3 
               L2= L4 = L5 = L7 = 0.4 
                L3 = 0.8 
Π−( ℰ )={L1 =L4 =L5 =L6 = L7 = L8 = 0.1 
               L2 = 0.6 
               L3 = 0.2 
Π−( ℰ )={L1 = L6 = L8 = 0.6  
                L2 = 0.2   
               L 3 = 0.5  
               L4 = L5 =  L7 = 0.7 
Then the upper  approximation of ℰ  for all x∈ ℵ is given by 
Π+( ℰ )={L1 = L3 = L6 = L8 = 0.8 
                L2 = 0.4  
                L4 = L5 = L7 = 0.7 
Π+( ℰ )={L1 = L3 = L6 = L8 = 0.2  
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              L2 = 0.6  
              L4 = L5 = L7 = 0.4 
Π+( ℰ )={L1 = L2 = L6 = L8 = 0.2  
                 L3 = 0.5  
                  L4 = L5 = L7 = 0.5 
Then Π(ℰ) = (Π−(ℰ), Π+(ℰ)) is a ℝ𝕊𝔽 set of ℵ 
Example 4.3. Let ℵ = {P1,P2,P3,P4,P5,P6,P7,P8} be the universe set and Π be the congruence 
relation on ℵ. The equivalence classes of ℵ are defined by 
ℵ/Π = {{P1,P4}, {P2,P3,P6}, {P5}, {P7,P8}} 
Let ℰ be the 𝕊𝔽 set of ℵ defined by 
 ℰ (𝑥) ={P1 = 0.2 
                 P2 = 0.5      
                  P3 = P8= 0.3 
                 P4 = P6 = 0.3 
                P5 = P7 = 0.4 
 ℰ (𝑥) ={P1 = 0.2  
                 P2 = P6 = P8 = 0.4 
                 P3 = 0.2 
                 P4 = 0.3 
                 P5 = 0.5  
                 P7 = 0.7 
 ℰ (𝑥) ={P1 = P3 = 0.4 
               P2 = 0.7 
                 P4 = 0.2 
                  P5 = P7 = 0.5 
                 P6 = 0.3 
                  P8= 0.8 
Then the lower approximation of ℰ  for all x∈ ℵ is given by 
Π−( ℰ )={P1 = P4 = 0.2 
                 P5 = 0.4 
                  P2 = P3 = P6= P7 = P8 = 0.3 
Π−( ℰ )={P1 = P4 = 0.1  
                 P2 = P3 = P6= 0.2 
                 P5 = 0.5 
                  P7 = P8 = 0.4 
Π−( ℰ )={P1 = P4= 0.4 
                P2 = P3= P6= 0.7 
                 P5= 0.5 
                 P7 = P8 = 0.8 
Then the upper  approximation of ℰ  for all x∈ ℵ is given by 
Π+( ℰ )={P1 = P2= P3 = P4 = P6 = 0.6 
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                 P5 = P7 = P8 = 0.4 
Π+( ℰ )={P1 = P4 = 0.3 
                P2 = P3= P6= 0.4 
                P5 = 0.5 
                P7 = P8 = 0.7 
Π+( ℰ )={P1 = P4= 0.2 
                 P2 = P3 = P6 = 0.3 
                 P5 = P7 = P8 = 0.5 
Then Π(ℰ) = (Π−(ℰ), Π+(ℰ)) is a ℝ𝕊𝔽 set of ℵ 
Definition 4.4. A 𝕊𝔽BI of ℵ is said to be a ℝ𝕊𝔽BI of ℵ if it is both Π-lower ℝ𝕊𝔽BI and Π-
upper ℝ𝕊𝔽BI of ℵ. 
 A  𝕊𝔽BI of ℵ is called a Π-lower (upper) ℝ𝕊𝔽BI of ℵ if its lower(upper) approximation is 
𝕊𝔽BI of ℵ. 
Example 4.5. Let ℵ = {z0, z1, z2} be a near-ring with the following multiplication table. 

Table 3 

+ z0 z1 z2 
z0 z0 z1 z2 
z1 z1 z2 z0 
z2 z2 z1 z0 

Table 4 
. z0 z1 z2 
z0 z0 z0 z0 
z1 z0 z1 z2 
z2 z0 z2 z1 

Let Υ be the congruence relation on ℵ. The equivalence classes of ℵ are defined by  
ℵ/Υ = {{z0}, {z1, z2}} 
Let ℰ be a 𝕊𝔽 set of ℵ defined by 
 ℰ (z0) = ℰ (z1) = ℰ (z2)=0.2 
 ℰ (z0)=0.5, ℰ (z1)= ℰ (z2)=0.4 
 ℰ (z1)=0.5 ,  ℰ (z0)= ℰ (z2)=0.3 
Then the lower approximation of ℰ is  
Π( ℰ )(z0) = Π (ℰ )(z1)= Π(ℰ )(z2) =0.2 

Π (ℰ (z0)=0.5,Π ℰ (z1)=Π(ℰ (z1)=0.4 

Π(ℰ (z1)=0.3, Π(ℰ (z1) =Π(ℰ (z1)=0.5 

Then the upper approximation of ℰ is  

Π( ℰ )(z0)=Π( ℰ )(z1) = Π( ℰ )(z2)=0.2 

Π( ℰ )(z0)=0.5, Π( ℰ )(z1)=Π( ℰ )(z1)=0.4 

Π( ℰ )(z0)=Π( ℰ )(z1)=Π( ℰ )(z1)=0.3 

then Π(ℰ) and Π(ℰ) are 𝕊𝔽𝐵𝐼 of ℵ . hence ℰ is a ℝ𝕊𝔽𝐵𝐼 of ℵ 

Theorem 4.6. Let ℰ be a 𝕊𝔽𝐵𝐼 of ℵ. Then ℰ be a ℝ𝕊𝔽𝐵𝐼  of ℵ 
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Proof : Assume that ℰ be a 𝕊𝔽𝐵𝐼 of ℵ. we want to prove ℰ is  ℝ𝕊𝔽𝐵𝐼. For that we have to 
prove   
Π−(ℰ) and  Π+(ℰ) are 𝕊𝔽𝐵𝐼 of ℵ. Let i, j,  p ∈ ℵ 
Then we consider  
Π−( ℰ )( i−j) = ⋀ ℰ∈[ ] (s) 

                    = ⋀ ℰ∈[ ] [ ] (s) 

                    =⋀ ℰ∈[ ] [ ] (k-q) 

                   = ⋀ ℰ∈[ ] , ∈[ ] (k) ∧  ℰ (q) 

                   =(⋀ ℰ∈[ ] (k)) ∧ (⋀ ℰ∈[ ] (q)) 

                   = Π−(ℰ )(i) ∧ Π (ℰ )(−j)  
≥ Π−(ℰ )(i) ∧ Π (ℰ )(j) 
Moreover 
Π−( ℰ )( i𝑗𝑘)=⋀ ℰ∈[ ] (s) 

                      =⋀ ℰ∈[ ] [ ] [ ] (s) 

                      =⋀ ℰ∈[ ] [ ] [ ] (pqr) 

≥ ⋀ min {ℰ∈[ ] ∈[ ] (p), ℰ (r)} 

= min {⋀ ℰ∈[ ] (p),⋀ ℰ∈[ ] (r)} 

                     min{ Π−(ℰ )(i), Π−(ℰ )(k)} 
similarly we can prove  the other case 
Π−( ℰ )( i−j)≥ Π−(ℰ )(i) ∧ Π (ℰ )(j) 
Π−( ℰ )( i𝑗𝑘)≥ min{ Π−(ℰ )(i), Π−(ℰ )(k)} 
and 
Π−( ℰ )( i−j)≥ Π−(ℰ )(i) ∧ Π (ℰ )(j) 
Π−( ℰ )( i𝑗𝑘)≥ min{ Π−(ℰ )(i), Π−(ℰ )(k)} 
Hence Π−(ℰ) is 𝕊𝔽𝐵𝐼 of ℵ. consequently we can prove Π+(ℰ)  is 𝕊𝔽𝐵𝐼 of ℵ. Thus ℰ is a  ℝ𝕊𝔽𝐵𝐼  
of ℵ. 
Theorem 4.7. If ℰ  𝑎𝑛𝑑 ℱ are ℝ𝕊𝔽𝐵𝐼 of ℵ. Then ℰ ∩ℱ  is ℝ𝕊𝔽𝐵𝐼 of ℵ. 
Proof. Since ℰ and  ℱ are ℝ𝕊𝔽𝐵𝐼 of ℵ. Then for all i, j ∈ ℵ we consider 
(Π (ℰ ) ∩ Π (ℱ ))(i−j) 
                   =(Π (ℱ ))(i−j)Λ(Π (ℰ )(𝑖 − 𝑗)) 
≥ (Π (ℰ )(𝑖)Λ Π (ℰ )(𝑗))Λ (Π (ℱ )(i) ΛΠ (ℱ )(𝑗)) 
                   =(Π (ℰ )(𝑖)Λ Π (ℱ )(𝑖))Λ (Π ( ℰ )(j) ΛΠ (ℱ )(𝑗)) 

≥ (Π (ℰ ) ∩ (ℱ ))(𝑖) ∧ (Π (ℰ ) ∩ (ℱ ))(𝑗) 
Moreover 
(Π (ℰ ) ∩ Π (ℱ ))(i𝑗𝑘) 
                     =(Π (ℰ ))(ijk)Λ(Π (ℱ )(𝑖𝑗𝑘)) 
≥ (Π (ℰ )(𝑖)Λ Π (ℰ )(𝑘))Λ (Π (ℱ )(i) ΛΠ (ℱ )(𝑘)) 

≥ (Π (ℰ ) ∩ (ℱ ))(𝑖) ∧ (Π (ℰ ) ∩ (ℱ ))(𝑘) 
For nonmembership function  
(Π (ℰ ) ∩ Π (ℱ ))(i−j) 
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                   =(Π (ℱ ))(i−j)Λ(Π (ℰ )(𝑖 − 𝑗)) 
≥ (Π (ℰ )(𝑖)Λ Π (ℰ )(𝑗))Λ (Π (ℱ )(i) ΛΠ (ℱ )(𝑗)) 
                   =(Π (ℰ )(𝑖)Λ Π (ℱ )(𝑖))Λ (Π ( ℰ )(j) ΛΠ (ℱ )(𝑗)) 

≥ (Π (ℰ ) ∩ (ℱ ))(𝑖) ∧ (Π (ℰ ) ∩ (ℱ ))(𝑗) 
Also  
(Π (ℰ ) ∩ Π (ℱ ))(i𝑗𝑘) 
                     =(Π (ℰ ))(ijk)Λ(Π (ℱ )(𝑖𝑗𝑘)) 
≥ (Π (ℰ )(𝑖)Λ Π (ℰ )(𝑘))Λ (Π (ℱ )(i) ΛΠ (ℱ )(𝑘)) 

≥ (Π (ℰ ) ∩ (ℱ ))(𝑖) ∧ (Π (ℰ ) ∩ (ℱ ))(𝑘) 
Finally for hesitancy function  
(Π (ℰ ) ∩ Π (ℱ ))(i−j) 
                   =(Π (ℰ ))(i−j)Λ(Π (ℱ )(𝑖 − 𝑗)) 
≥ (Π (ℰ )(𝑖) ∨  Π (ℰ )(𝑗))Λ (Π (ℱ )(i) ∨ Π (ℱ )(𝑗)) 
                   =(Π (ℰ )(𝑖)Λ Π (ℱ )(𝑖)) ∨(Π ( ℰ )(j) ΛΠ (ℱ )(𝑗)) 

≥ (Π (ℰ ) ∩ (ℱ ))(𝑖) ∨ (Π (ℰ ) ∩ (ℱ ))(𝑗) 
Also 
(Π (ℰ ) ∩ Π (ℱ ))(i𝑗𝑘) 
                     =(Π (ℰ ))(ijk)Λ(Π (ℱ )(𝑖𝑗𝑘)) 
≥ (Π (ℰ )(𝑖) ∨  Π (ℰ )(𝑘))Λ (Π (ℱ )(i) ∨ Π (ℱ )(𝑘)) 
≥ (Π (ℰ ) ∩ (ℱ ))(𝑖) ∨ (Π (ℰ ) ∩ (ℱ ))(𝑘)  
Therefore Π−( ℰ ) ∩ Π−( ℱ ) is 𝕊𝔽𝐵𝐼 of ℵ. Similarly we can prove for Π+( ℰ ) ∩ 
Π+( ℱ ).Consequently 
we prove  for the remaining cases .Hence  ℰ ∩ℱ  is ℝ𝕊𝔽𝐵𝐼 of ℵ. 
 
 
5.CONCLUSION 
Spherical fuzzy sets are an attempt to provide a general view to three dimensional fuzzy sets. 
To investigate the structure of an algebraic system, we see that the spherical fuzzy ideals on 
near ring with special properties always play a central role. The purpose of this paper is to 
initiated the concept of spherical fuzzy bi-ideals and rough spherical fuzzy bi-ideals on near 
rings. Some characterizations of rough spherical fuzzy bi-ideals are obtained on near ring. Our 
future work is to extend this idea to other algebraic domain such as semi hyper near ring, 
semigroup etc. 
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