
JOURNAL OF NORTHEASTERN UNIVERSITY

Volume 25 Issue 04, 2022 ISSN: 1005-3026 https://dbdxxb.cn/ Original Research Paper

Submitted: 16/11/2022 Accepted: 05/12/2022

2382

HYBRID RANDOM-GRID OPTIMIZATION TECHNIQUES FOR A MALARIA
PREDICTION USING MACHINE LEARNING ALGORITHMS

Yusuf Aliyu Adamu and Jaspreet Singh

School of Engineering GD Goenka University Sohna 12203 Haryana, India
aliyuadamuyusuf@gmail.com

ABSTRACT
Algorithms for machine learning have been commonly used in many applications and fields.
Diseases like malaria can be predicted using machine learning algorithms to create a suitable
and precise model that predicts when, how, and where the outbreak will occur. The model
performance can be improved using various strategies, such as ensemble methods or fine-
tuning the hyper-parameters. Choosing a proper hyper-parameter configuration impacts the
model accuracy, so it must fit well to improve the performance even though different
optimization techniques exist, each with its benefits and disadvantages when used to solve
various tasks. When working with hyper-parameter optimization strategies, a greater
understanding of how machine learning models work is usually necessary. In this study, a
hybridized form of Random-Grid optimization is proposed and applied to the three standard
machine learning algorithms; K-nearest Neighbors, Random Forest, Support Vector Machine
and their ensemble. It works by doing a randomized search to obtain the best hyper-parameters
and then using it in a grid search to minimize the time it will take to search for the optimal
combination of hyper-parameters. The grid and the random search work together to obtain the
optimal hyper-parameters to improve the model accuracy by specifying the number of
iterations to be performed when looking for the optimal model. The proposed technique is
compared with well-known techniques such as Bayesian optimization, the Grid search,
Random Search, genetic algorithm, and the particle swamp and evaluated using the malaria
dataset obtained from the World Health Organization. The proposed technique improved the
prediction accuracy for each base learner through an experimental study, and the ensemble
method gives better results for HRGO-ensemble, HRGO-RFC, HRGO-SVM, and HRGO-
KNN with 97%, 96%, 95 and 93%, respectively.
Keywords: Malaria, Machine Learning Algorithms, Hyper-parameter, Genetic Algorithm,
Particle Swarm Optimization, Bayesian Optimization.

1.0 INTRODUCTION

A parasite that typically infects mosquitoes that feed on humans causes malaria, a dangerous
and occasionally fatal infectious disease. According to the world health organization, there
were more than 200 million reported malaria cases globally [1]. The year 2020 saw a surge in
malaria infections in Africa due to the global coronavirus pandemic that claimed many lives.
The primary factor contributing to the high fatality rate is the lack of immediate and proper
assessment of malaria treatment [2]. Numerous investigations indicated that non-climatic and
atmospheric elements play a substantial role in predicting the frequency of malaria outbreaks

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2383

in society. Technology improvements enable early prediction and preventive mechanisms,
giving government and non-government organizations more time to prepare and stop the spread
of diseases that could otherwise claim many lives.
In several application domains, such as user behaviours, computer vision, health care,
recommendation systems, and natural language processing, machine learning has recently
emerged as one of the most efficient techniques [3]. It has many benefits like robustness,
relatively cheap computation, generality, and better performance. Different algorithms are
appropriate for solving various types of issues [4]. Owing to its adaptability and efficiency in
resolving data analytics-related issues [5]. However, building an effective model requires a
series of processes because of its complexity and time-consuming nature in identifying an
appropriate algorithm and tuning its hyper-parameters [6]. Researchers employed numerous
methods as predictive models to improve model accuracy by reducing variance and limiting
model bias. As a result, algorithms perform better than others at producing correct results based
on the available problems to be solved [7]. Researchers also developed enhanced ensemble
techniques to increase the efficiency performances of the classifiers [8]. Researchers are
constantly working to boost the accuracy of their methods and procedures. The right
combination of hyper-parameter tweaking improves the model's accuracy and efficiency.
There are two parameters: the model parameter, which is set up and modified as the actual
training process progresses, and the hyper-parameter, which works before training a model.
Hyper-parameters specify the model architecture and cannot be predicted effectively from data
learning [9]. Hyper-parameters are variables used to set up a model or specify how to minimize
loss function [10]. Constructing a model architecture with the ideal hyper-parameter tuning is
the primary component of creating an efficient learning model, especially for deep neural
networks and tree-based models [11]. However, the tuning approach varies between algorithms
because it may be discrete, categorical, or continuous [12]. The hyperparameter can be tuned
manually [13]. It is ineffective for some issues due to the complicated nature of models, many
hyper-parameters, non-linear hyper-parameter interactions, and time-consuming model
evaluations. These circumstances lead to hyper-parameter optimization (HPO) [14].
Automating the hyper-parameter tuning process and enabling its efficient application in
machine learning models are the primary goal of hyper-parameter optimization [6].
It is crucial to pick the ideal optimization method to find the best hyper-parameters.
Conventional methods are not appropriate for all optimization situations since many hyper-
parameter optimization problems are not convex and could result in the local optimum rather
than the global one [15]. The most popular conventional optimization technique is the gradient
descent-based approach, which continuously adjusts hyper-parameters by determining their
slope [16]. Decision theoretic approaches, metaheuristic algorithms, multi-fidelity techniques,
and Bayesian methods are better for optimization problems because they can more accurately
identify conditional, categorical, and discrete hyper-parameters [10]. Using the optimization
technique to alter the hyper-parameters of the models improved their computational complexity
and performance. "Hyper-parameter optimization" aims to efficiently automate the hyper-
parameter tuning process using machine learning models to solve real-world issues [5]. After

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2384

the hyper-parameter optimization process, the model architecture would be optimal as
expected. Optimization methods are necessary to increase the performance of machine learning
models and decrease the time spent tuning hyper-parameters, especially for models with more
hyper-parameters. It also helps find the optimal model for a given task when the same threshold
of hyper-parameters is used [10].
The grid search (GS) method creates hyper-parameters search space, identifying the possible
hyper-parameter combinations inside a fixed region of hyper-parameters value [17]. Random
Search (RS) chooses combinations of hyper-parameters randomly from the search space while
utilizing constrained resources and execution time [18]. Hyper-parameters are treated
independently in both grid and random search. Training a learning model requires an
appropriate amount of time and space. Bandit-based algorithms like the hyper-band technique,
a more excellent version of random search, frequently use multi-fidelity optimization
techniques to handle jobs with limited resources [19]. Although using proper hyper-parameter
optimization techniques, machine learning models perform much better. Though each
optimization technique has pros and cons, the choice is made based on the task.
As the number of parameters increases, so does the number of evaluations, making GS an
inefficient HPO method for high dimensionality hyper-parameter configuration unless
configuration space for hyper-parameter is limited [20]. Because each evaluation is
independent, RS is simple to parallelize, efficient, capable of exploring a more extensive search
space, and resource-allocated. Reducing the possibility of wasting time on a limited, irrelevant
search space. Its limitation is that each iteration's evaluation is independent of previous
evaluations [18]. GS and RS issues can be solved by creating new optimization techniques
using records from previous evaluations to determine the subsequent evaluation and obtain
optimal hyper-parameters.
Proper optimization algorithm selection necessitates understanding the various ML models
and problems. This paper makes the following contributions:

1. It examines standard ML algorithms and their key hyper-parameters.
2. It examines standard HPO techniques to assist in their application to various ML

models through appropriate algorithm selection in practical problems.
3. It combines the strength of the Grid and Random search to propose a newly

hybridized form of Random-grid optimization (HRGO), which will help to know the
appropriate hyper-parameters combination to design a better model.

4. It ensemble the classifiers used and compares it with an optimized ensemble version
of the proposed algorithm

The experiment was carried out using a malaria dataset from the world health organization. It
works by doing a randomized search to obtain the best hyper-parameters and then using it in a
grid search to minimize the time it will take to find the optimum combination. The grid and a
random search work together to obtain the best hyper-parameters to improve the model
performance. The proposed HRGO technique is used to observe the effect of hyperparameters
on the individual model and the ensemble. Tuning hyperparameters of the model inside the

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2385

optimal ensemble will result in better prediction accuracy. The performances are compared
with well-known optimization techniques such as Bayesian optimization, Grid search, Random
Search, genetic algorithm, and particle swamp optimization. Random Forest, SVM, and KNN
are the machine learning algorithms used and the stacking method of an ensemble for the
experiment. The paper begins with an introduction and briefly explains optimization techniques
in the second section of related work and the algorithms employed. It then moves on to section
three, where the techniques and approaches used for the performance metrics are analyzed, and
the fourth section describes the finding and discussions before concluding.

2.0 RELATED WORK
Statistical modelling and Machine learning algorithms are commonly used for the prediction
process. All of these methods, along with computational engineering models, are vital for
forecasting and decision-making [21]. Climatic factors play a significant role in malaria
transmission [22]. Rainfall, be it plenty or inadequate, has been discovered to have an impact
beyond just the risk of malaria [23]. Temperature and rainfall are the key factors attributed to
malaria spread [24].

Generally, formulating machine learning models requires tuning a hyper-parameter using
optimization techniques to fit a model to specific problems. An algorithm for machine learning
includes supervised semi-supervised, unsupervised, or reinforcement learning. Classification
or regression problems are examples of supervised learning, which refers to the methods that
relate input features to a target set of labelled data [25]. K-nearest neighbour, linear models,
deep learning, decision tree-based, support vector machines, and Naive Bayes algorithms are
all supervised learning [26]. Unsupervised learning algorithms, which include dimension
reduction and clustering, are used to recognize patterns in unlabeled data [27]. Semi-supervised
learning techniques are generic models, self-training, and other techniques [28]. Different
learning algorithms are combined to improve the model's performance, such as bagging,
voting, stacking, AdaBoost, and XGBoost [29]. When employing different configurations of
hyper-parameters, it is possible to generate an optimal predictive model function that varies
based on the model's architecture. Different loss functions, including information gain, cross-
entropy, hinge loss, contrast loss, and the square of Euclidean distance, are used in supervised
learning [30]. In order to create various models, machine learning algorithms employ various
hyper-parameter setups.

K-Nearest Neighbors; The data point is classed by calculating the separations between the data
points and determining which class most of its k-Neighbors be. The model will underfit if the
value of k is small and overfit if it is too large, requiring more computation time. Therefore, k
is the paramount hyper-parameter to consider [31], depending on the problem to deal with
during prediction. While in a support vector machine, the concept of data point mapping is
linearly separable from a low dimension into a high-dimensional space [32]. The hyper-plane
is the root cause of the categorization boundary that separates data points [33]. A kernel

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2386

function measures the similarity between data points, which would be the hyper-parameters to
be tuned [34]

Furthermore, the Decision Tree classifier is a tree-based structure for making decisions [35]. It
has three components: the root node, which represents the overall data; the sub-node; and the
leaf node. Techniques are employed to split the data while considering several features [36].
The maximum depth of a tree is one of the primary hyper-parameters of the decision tree
algorithm. If the tree has more subtrees as it goes down, an accurate decision can be obtained
[37]. Other hyper-parameters would be tuned to have a more effective split by setting
measuring functions that can either be Gini impurity or information gain [38]. The model
performance can increase by combining several decision trees, like an extra tree, random
forests, and extreme gradient boosting models. In Random Forest, decision trees are
constructed on several randomly selected subsets of data and choose the class with the highest
majority vote to be the overall classification outcome [39]. XGBoost is an ensemble model that
uses boosting and gradient descent methods to improve the performances and the speed of a
decision tree [40]. An extra tree uses the whole sample data to formulate a decision tree and
choose the feature set randomly [41].

Finally, naïve Bayes uses the Bayes theorem concept [42]. Smoothing parameters are the
continuous hyper-parameters that are in the Bayes theorem. In this case, there is no need to
tune the hyper-parameter. However, various fields are employed in the deep learning model,
such as natural language processing, computer vision, and machine translation. The idea of
artificial neural networks serves as the foundation for these models. Deep belief networks, deep
neural networks, feedforward networks, recurrent neural networks, and convolutional networks
are types of deep learning architecture [43]. Since the models all have comparable hyper-
parameters that need to be tweaked, they gain more from HPO because their underlying neural
networks are similar.

Babysitting is one of the optimization techniques that are manual and called the grad student
descent or trial and error method because it has a simple workflow that deals with the
fundamental hyper-parameter tuning technique [13]. After designing the model, the user will
give possible hyper-parameters based on their guessing, experience, or previously evaluated
outcomes. The process will repeatedly continue until the desired result is satisfied by the user
by reaching optimal hyperparameter values. However, this technique is not feasible for some
problems due to complex models, several hyper-parameters, time spent for model evaluation,
and nonlinear hyper-parameters interaction [14]. These features have led to the development
of techniques for automatically optimizing hyperparameters [44]. The gradient descent method
minimizes the cost function to reduce mistakes and increase model correctness. By computing
the gradient of the variable, a random point is chosen and arbitrarily chosen a direction to
identify the optimal and advance towards the optimal, which is in the opposite direction of the

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2387

most significant gradient, to find the next point [45]. Since it is challenging to reduce errors,
optimization stops when there is no improvement, at which point a local minimum.

The grid search employs an exhaustive search or brute-force approach to evaluate all potential
grid-given combinations to investigate the hyper-parameter configuration space [5]. It analyses
the Cartesian product of a specific set of user-supplied data [11]. Whenever the available hyper-
parameter configuration space is limited, it works well. While in a random search, the technique
picks and trains a specified number of observations using a random selection between the lower
and higher boundaries as potential hyper-parameter values [46]. When the configuration region
is enormous, a global optimum can be quickly found, even on a minimal budget. Furthermore,
since every evaluation is independent, resources can then be shared concurrently, lowering the
possibility of spending time on the search space. Bayesian optimization is an iterative
procedure for hyper-parameter optimization that bases its computations on the value already
tested to establish the following potential evaluation points [47]. First, it generates the
appropriate hyper-parameter configuration using two elements, the acquisition function
surrogate model [48]. Then, the surrogate model is updated each time the objective function is
analyzed. Finally, it uses the previous result to detect the optimal hyperparameter
combinations. That makes it more efficient, and methods are effective on stochastic, non-
convex, and non-continuous objective functions. The core disadvantage is that it is difficult to
reach a global optimum if it fails to stabilize between exploration and exploitation. Instead, it
might just go to the local minimum. Furthermore, the model cannot work parallelized because
the intermediate results depend on one another [12]. According to the posterior distribution,
exploitation entails sampling in the existing location where the global optimum is the most
likely to occur, while exploration entails sampling instances in areas that still need to be
checked.

The genetic algorithm is based on evolutionary theory as it is one of the heuristic methods. It
tests the survival capability and adaptability of individuals. Those with the best are likely to
pass them on to the next generation and inherit their parents' worst and best characteristics [49].
Weaker ones are likely to disappear, and better ones have offspring more capable of surviving.
After so many generations, only those with better adaptability will be globally optimal [50]. A
particle swarm optimization approach uses an evolutionary algorithm widely [51]. It emerged
from biological populations that reflect people's social behaviours [52]. It enables groups of
particles to move across the search space in an essentially random pattern [14]. This algorithm
determines the best solutions by recognizing and exchanging information with each particle in
the group. After each iteration, they share information as they operate independently. That
makes it easy to parallelize, which leads to an improvement in model efficiency [14]. A global
optimum can be achieved only by performing a good population initialization through prior
knowledge or by employing approaches designed primarily for discrete hyperparameters [53].
Finally, Hyperband dynamically chooses a manageable number of configurations [54]. It
balances model resource usage and its performance mostly with limited resources and time,

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2388

which makes it more efficient [55]. However, every hyper-parameter is handled separately.,
without considering their correlations [56]. As a result, it is inefficient for algorithms like
DBSCAN, logistic regression, and SVM that use conditional hyperparameters.

3.0 METHODOLOGY
In this section, we develop a proposed model called hybrid Random-grid optimization (HRGO)
to enhance the performance of the models, and the outcomes of applying hyper-parameter
optimization techniques are contrasted, analyzed, and optimized on three models due to their
adjustable hyper-parameters. Possible hyper-parameters used in SVM are the kernel type and
penalty parameter. KNN only uses K as the primary hyper-parameter to determine each
sample’s nearest Neighbors. Random Forest has a variety of multiple hyper-parameters to
adjust. The model performances of different classifiers, k-nearest Neighbors (KNN), Random
Forest classifier (RFC), Support Vector Machine (SVM), and their stacking ensemble using
logistic regression are compared with the optimized HRGO of all the classifiers. The malaria
dataset obtained from the World Health Organization contains different features such as the
percentage of the population using at least basic sanitation and drinking water, the total number
of yearly malaria reported cases, a total Incidence of malaria, and climatic features of an
average temperature and average Rainfall. Algorithms used 80 per cent and 20 per cent for
training and testing, respectively. Finally, Grid Search, Random Search, Particle Swarm
Optimization, Genetic Algorithm, and Bayesian Optimization were also the techniques
implemented during the comparison to examine the effects of using hyper-parameter
optimization approaches on the classifiers. The machine learning models and HPO were
analyzed using Python libraries like Sklearn [57], Skopt [58], Hyperopt [59], Optunity [60],
BOHB [61], and TPOT [62]. The machine learning algorithms are compared using various
criteria such as accuracy, macro average, precision, recall, and weighted average to discover
which works better in this specific use case and which is most likely to perform equally well
given a similar dataset.
Characters define as False Positive (FP), False Negative (FN), True Positive (TP), True
Negative (TN).

The performance of the classifier's default configuration is measured by considering how
classifiers identify an instance into the category of TP, TN, FP, and FN. Also measured
accuracy, precision, and recall using the classification report. Accuracy is the key performance
indicator for classifiers with the appropriate hyper-parameter setting. Therefore, the same
configuration space for the hyper-parameter is maintained to evaluate all the optimization
techniques. For example, KNN has only one hyper-parameter to utilize by setting it to a specific
range. They additionally configured for Random Forest and SVM in the same configuration
area.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2389

3.1 Proposed HRGO Algorithm

This Algorithm shows how the hybrid form of Random and Grid search can work together in
choosing the best combination of hyper-parameters named hybrid random grid optimization
(HRGO).

Table 1: Symbols and their description used in the proposed algorithm

S/N Symbol Description
1 S Set of all values
2 𝑆௢ Value to be selected in the search space

3 f (𝑆௢) The Function of value

4 𝑆௡௘௪ New independent value after the increment

5 𝑆௭ Last value in search space

6 K Value to increment

Table 1 indicates symbols and their description that are used in our newly develop HRGO
techniques. The steps are:

Step 1: Select an initial and current value for each 𝑆௢ at random where 𝑆௢ES.

Step 2: Calculate f (𝑆௢) and put K=0

Step 3: if 𝑆௢ == optimal value, stop with progress

Step 4: Generate new independent values say 𝑆௡௘௪(K+1) E S in accordance with the selected
probability distribution

 if f(𝑆௡௘௪(K+1) < f (𝑆௭)

 Set 𝑆௭ିଵ = 𝑆௡௘௪(K+1)

 Else

 𝑆௭ିଵ = 𝑆௭

Step 5: The process will end when the predetermined number of evaluations has been met.

Step 6: If the results are optimal, choose that option; otherwise chose 𝑆௡௘௪, end if

Step 7: Try on all selected values of 𝑆௢, 𝑆௡௘௪(k+1)

Step 8: Return the best results after the allotted number of iterations.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2390

3.2 How the Algorithm Work

Since grid search and random search techniques performed independent experiments in
creating models with different hyper-parameters in isolation, we can use the information from
one random search to improve the grid search experiment. First, use a randomized search to
obtain the best hyper-parameter and then use it in a grid search to minimize the time it will take
to search for the optimum hyper-parameters. In this case, the two techniques work together to
obtain the best hyperparameters combination that improves the model performance by
specifying the number of iterations to be performed when looking for the best model. The
random search allows values to be sampled randomly from a statistical distribution for each
hyper-parameter. The hyper-parameter values of the model will be set by sampling the defined
distribution for each iteration. The grid search can then be enhanced to thoroughly search for
an optimal solution following a random search to focus on finding the best value for the crucial
hyper-parameter by reducing the results. Finally, a combination of all the hyper-parameter
values obtained from a random search with some additional values within the regions where
the model will perform well is utilized and used to build a model by evaluating the hyper-
parameter and selecting the ones that give the best result.
All of the employed optimization techniques have their performance metrics compared:

1. For all optimization approaches, the number of iterations is 100.
2. The experiment is rerun with different random seeds, and we use majority voting to

obtain the best result.
3. The most accurate model architecture with the best hyper-parameter configuration is

selected. Certain constraints have been taken into account when comparing the
optimization algorithms chosen.

4. All optimization methods use the same configuration space for the k-nearest Neighbors,
where only one parameter needs to be optimized and is set between 1 to 50 for the
assessment of each optimization method.

Our concern is improving the model performance's accuracy, which is only possible when an
appropriate selection of hyper-parameters is made in the models or their ensemble. Since
predicting the best values for hyper-parameters is difficult, there is a need to try all the possible
values to have the optimal one. The HRGO method proposed is used in all the selected
classifiers and compared their performances with default running and individual optimization
techniques.

Table 2: Hyper-parameter setting space for the Proposed HRGO Technique
 Classifiers Hyper-parameters Data Type Specification of search space

HRGO-KNN n-neighbors Int [1, 100]

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2391

HRGO-RFC n_estimators
max_depth
min_sample_split
max_sample_leave
criterion
max_features

Discrete
Discrete
Discrete
Discrete
Categorical
Discrete

start=200, stop=2000, num=10
(10,1000,10)
[1,3,4,5,7,9]
[1,2,4,6,8]
[‘Gini’, ‘entropy’]
'auto','sqrt','log2'

HRGO-SVM C
Kernel

gamma
Randon_state

Float
Float

Int
Int

[1.0]
‘linear’,’rbf’,’poly’,’sigmoid’,’pre
computed’
‘auto’, ‘scale’
Instance or None

Table 2 above describes all the hyper-parameters’ configuration and the configuration search
space for all the classifiers used for the newly proposed techniques.
4.0 RESULT AND DISCUSSION
Figure 1 indicates how variables used in the analysis correlated with one another. It also shows
a reasonable correlation between malaria incidence and Rainfall and moderately correlated
with Temperature, Basic drinking water services, and sanitation services, and less correlation
exists with other features. Three models were trained and assessed as a baseline model with
their default hyper-parameter setting. We measured the performances of our model by
calculating the accuracy, AUC, weighted average, Macro average, precision, recall, and F1
score.

Figure 1: Heat map Correlation of the variables used for analysis

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2392

The results provided in Table 3 summarize the confusion matrix for all the classifiers and found
that adopting optimization approaches is necessary because using the default hyper-parameters
setting does not produce the best model performance in our results. It indicates how the models
classified instances correctly and incorrectly. It also shows that the proposed HRGO ensemble
can classify the data into TP, TN, FP, and FN more than all other classifiers. It is found that
HRGO-SVM, HRGO-RFC, and HRGO-KNN using the Table 2 hyper-parameters
configuration has more chance of classifying the instances. Each classifier has its advantage
depending on what the user is looking for in the analysis. The ensemble of classifiers produces
a better categorization of the instances, followed by Random Forest classifiers, SVM, and
KNN.
Table 3: Default classifiers and proposed Confusion Matrix
 PREDICTED

A
ct

ua
l

 RFC KNN SVM RF_Kn_Sv
m

ENSEMB
LE

HRGO
-RFC

HRGO
-KNN

HRGO
-SVM

HRGO_
ENSEMB

LE

 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 19

0
1
1

16
4

3
7

18
1

2
0

192 9 19
6

5 19
1

1
0

20
1

0 201 2

0 9 9
0

39 6
0

55 4
4

8 91 8 9
1

10 8
9

14 8
5

7 90

The performance of the model’s default hyper-parameters and HRGO is shown in Table 4; the
result of the proposed technique clearly shows that HRGO outperforms all other classifiers,
particularly HRGO-ensemble with accuracy, recall, precision, macro average, F1- score,
weighted average and AUC with 97%, 99%, 96%, 96%, 97%, 97% and 97% respectively.
Based on the default configuration, the ensemble is optimal with 96% F1-score, 94% macro
average, 94% weighted average, 96% recall, 96% precision, and 94 % accuracy, followed by
the Random Forest classifier with 93% SVM and KNN with 75% each.
Table 4: The performance classification of classifiers using default hyper-parameters and
proposed method
Classifiers Accuracy

%
Recall
%

Precision
%

Macro
average
%

F1-
Score
%

Weighted
average %

AUC
%

Random Forest 93 95 95 92 95 93 93
KNN 75 82 81 71 81 75 93
SVM 75 90 77 73 83 74 67
RF_Knn_Svm
ENSEMBLE

94 96 96 94 96 94 94

HRGO-RFC 96 98 96 95 97 96 96
HRGO-KNN 93 95 95 92 95 93 92

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2393

HRGO-SVM 95 100 93 97 97 96 93
HRGO_Ensemble 97 99 96 96 97 97 97

Table 5 summarizes the default configuration, selected optimization techniques and proposed
HRGO methods applied to machine learning algorithms and provides the accuracy of each
optimization evaluated. Each optimization technique is evaluated based on accuracy, indicating
that the accuracies vary across each technique.
Table 5: Accuracy performance analysis of applying the HPO on the classifiers
Optimization Random Forest SVM K-Nearest Neighbor
Default Configuration 93% 75% 75%
Grid Search 96% 78% 94%
Random Search 86% % 94%
Genetic Algorithm 96% 77% 95%
Swarm Particle Algorithm 95% 77% 93%
Bayesian Optimization 87% 78% 93%
Proposed HRGO 96% 95% 93%

The accuracy of default configuration is 93% for Random Forest, 75% for each KNN, and
SVM, which increased when using any optimization techniques. Comparing the overall
performance of all the individual classifiers and their optimization techniques shows that the
proposed HRGO method gives more 96%, 95%, and 93% accuracy than all other optimization
techniques when using Random Forest, SVM, and KNN, respectively. Therefore, it is essential
to utilize optimization techniques to obtain optimal results.
5.0 CONCLUSION
With so many applications in the realm of research, machine learning algorithms have emerged
as the method for solving data-related issues. Machine learning models' hyper-parameters must
be tweaked to fit a particular dataset for solving practical problems. Although manually
adjusting hyper-parameter is challenging and highly expensive. It has become vital since the
rate at which data use has dramatically grown in real-world applications. The primary concern
for choosing appropriate hyper-parameters is to increase the model performance. The five
optimization techniques chosen are grid search, random search, Genetic algorithm, Bayesian
optimization, and particle swarm. Each of the techniques has an accuracy higher compared to
the default configuration. Our experiment shows that the accuracy increased when using the
proposed HRGO technique, which gives 97%, 96%, 95, and 93% for HRGO-ensemble,
HRGO-RFC, HRGO-SVM and HRGO-KNN respectively. Optimization approaches are
selected based on the algorithm and the hyper-parameters that ensure the model is well-fitted.
The newly developed technique can be used well for predicting malaria by giving better
accuracy than the existing techniques. The effect of tuning the hyperparameter of three models
and their ensemble is observed.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2394

REFERENCES
1. WHO (2019). Malaria. Available: http://www.who.int/malaria/en/
2. WHO (2019) Overview of malaria treatment. Available:

http://www.who.int/malaria/areas/treatment/overview/en/.
3. M.I. Jordan, T.M. Mitchell (2015). Machine learning: Trends, perspectives, and

prospects, Science 255–260. https://doi.org/10.1126/science.aaa8415.
4. Bonow, R.O.; Mann, D.L.; Zipes, D.P.; Libby, P. Braunwald’s (2011). Disease E-Book:

A Textbook of Cardiovascular Medicine; Elsevier Health Sciences: Amsterdam, the
Netherlands.

5. M.-A. Zoller and M. F. Huber (2019), Benchmark and Survey of Automated Machine
Learning Frameworks, arXiv preprint arXiv:1904.12054.
https://arxiv.org/abs/1904.12054.

6. R. E. Shawi, M. Maher, S. Sakr (2019). Automated machine learning: Stateof-the-art
and open challenges, arXiv preprint arXiv:1906.02287.
http://arxiv.org/abs/1906.02287.

7. Yusuf Aliyu.Adamu, Singh J (2021). Malaria Prediction Model Using Machine
Learning Algorithms. Turkish Journal of Computer and Mathematics Education,
Vol.12 No.10, 7488- 7496. Doi-10.17762/turcomat.v12i10.5655.

8. Yusuf Aliyu Adamu, Jaspreet Singh, (2021). Malaria prediction model using advanced
ensemble machine learning techniques. Jour. of Med. P’ceutical & Allied. Sci. V 10 - I
6, 1701, P3794-3801. doi: 10.22270/jmpas.V10I6.170

9. M. Kuhn and K. Johnson, (2013). Applied Predictive Modeling., Springer ISBN:
9781461468493.

10. G.I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, H. Samulowitz, (2017). An effective
algorithm for hyperparameter optimization of neural networks, IBM J. Res. Dev. 61,
1–20. https://doi.org/10.1147/JRD.2017.2709578

11. F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., (2019). Automatic Machine Learning:
Methods, Systems, Challenges, Springer ISBN: 9783030053185.

12. N. Decastro-Garc´ıa, A. L. Mu˜noz Casta˜neda, D. Escudero Garc´ıa, and ´ M. V.
Carriegos, (2019). Effect of the Sampling of a Dataset in the Hyperparameter
Optimization Phase over the Efficiency of a Machine Learning Algorithm, Complexity.
https://doi.org/10.1155/2019/6278908.

13. S. Abreu, (2019). Automated Architecture Design for Deep Neural Networks, arXiv
preprint arXiv:1908.10714. http://arxiv.org/abs/1908.10714.

14. O. S. Steinholtz, (2018). A Comparative Study of Black-box Optimization Algorithms
for Tuning of Hyper-parameters in Deep Neural Networks, M.S. thesis, Dept. Elect.
Eng., Lule˚a Univ. Technol.,.

15. G. Luo, (20`6). A review of automatic selection methods for machine learning
algorithms and hyper-parameter values, Netw. Model. Anal. Heal. Informatics
Bioinforma. 5, 1–16. https://doi.org/10.1007/s13721- 016-0125-6.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2395

16. D. Maclaurin, D. Duvenaud, R.P. Adams, (2015). Gradient-based Hyperparameter
Optimization through Reversible Learning, arXiv preprint arXiv:1502.03492.
http://arxiv.org/abs/1502.03492.

17. J. Bergstra, R. Bardenet, Y. Bengio, and B. K´egl, (2011). Algorithms for
hyperparameter optimization, Proc. Adv. Neural Inf. Process. Syst., 2546–2554.

18. B. James and B. Yoshua, (2012). Random Search for Hyper-Parameter Optimization,
J. Mach. Learn. Res. 13 (1), 281–305.

19. L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, Hyperband,
(2012). A novel bandit-based approach to hyperparameter optimization, J. Mach.
Learn. Res. 18, 1–52.

20. M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. De Moor, Easy Hyperparameter
Search Using Optunity, arXiv preprint arXiv:1412.1114, (2014).
https://arxiv.org/abs1412.1114.

21. Li H, (2018). Ensemble learning for overall power conversion efficiency of the all-
organic dye-sensitized solar cells. IEEE Access 6:34118–26. Doi-
10.1109/ACCESS.2018.2850048.

22. M. Woube, (1997). Geographical distribution and dramatic increases in incidences of
malaria: consequences of the resettlement scheme in Gambela, SW Ethiopia,” Indian
Journal of Malariology, vol. 34, no. 3, pp. 140–163.

23. A. D. Kassa and B. B. Beyene, (2014). Climate variability and malaria transmission—
fog era district, Ethiopia, 2003–2011,” Science Journal of Public Health, vol. 2, no. 3,
pp. 234–237.

24. M. C. Thomson, S. J. Mason, T. Phindela, and S. J. Connor, (2005). “Use of rainfall
and sea surface temperature monitoring for malaria early warning in Botswana,” The
American Journal of Tropical Medicine and Hygiene, vol. 73, no. 1, pp. 214–221.

25. Y. Kim, (2014). “Convolutional neural networks for sentence classification,” in
Conference on Empirical Methods in Natural Language Processing, pp. 1746–1751.

26. R. Caruana, A. Niculescu-Mizil, (2006). An empirical comparison of supervised
learning algorithms, ACM Int. Conf. Proceeding Ser. 148, 161–168.
https://doi.org/10.1145/1143844.1143865.

27. J. A. Hartigan and M. A. Wong, (1979). “Algorithm AS 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.
28, pp. 100–108.

28. K. P. Bennett and A. Demiriz, (1999). “Semi-supervised support vector machines,” in
Advances in Neural Information processing systems, pp. 368–374.

29. T.Chen, C.Guestrin, (2016). XGBoost: a scalable tree boosting system, arXiv preprint
arXiv:1603.02754. http://arxiv.org/abs/1603.02754.

30. C. Gambella, B. Ghaddar, J. Naoum-Sawaya, (2019). Optimization Models for
Machine Learning: A Survey, 1–40. http://arxiv.org/abs/1901.05331.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2396

31. W. Zuo, D. Zhang, K. Wang, (2008). On kernel difference-weighted nearest neighbor
classification, Pattern Anal. Appl. 11, 247–257. https://doi.org/10.1007/s10044-007-
0100-z.

32. A. Smola, V. Vapnik, (1997). Support vector regression machines, Adv. Neural Inf.
Process. Syst. 9, 155-161.

33. L. Yang, R. Muresan, A. Al-Dweik, L.J. Hadjileontiadis, (2018). Image-Based
Visibility Estimation Algorithm for Intelligent Transportation Systems, IEEE Access.
6, 76728–76740. https://doi.org/10.1109/ACCESS.2018.2884225.

34. O.S. Soliman, A.S. Mahmoud, 92012). A classification system for remote sensing
satellite images using support vector machine with non-linear kernel functions, 2012
8th Int. Conf. Informatics Syst. INFOS, BIO-181-BIO-187.

35. S. Rasoul, L. David, (1991). A Survey of Decision Tree Classifier Methodology, IEEE
Trans. Syst. Man. Cybern. 21, 660–674.

36. D.M. Manias, M. Jammal, H. Hawilo, A. Shami, P. Heidari, A. Larabi, R. Brunner,
(2019). Machine learning for performance aware virtual network function placement,
2019 IEEE Glob. Commun. Conf. GLOBECOM- Proc. 12–17.
https://doi.org/10.1109/GLOBECOM38437.2019.9013246.

37. L. Yang, A. Moubayed, I. Hamieh, A. Shami, (2019). Tree-based intelligent intrusion
detection system in the internet of vehicles, IEEE Glob. Commun. Conf. GLOBECOM
2019 - Proc. https://doi.org/10.1109/GLOBECOM38437.2019.9013892.

38. S. Sanders, C. Giraud-Carrier, (2017). Informing the use of hyperparameter
optimization through meta-learning, Proc. - IEEE Int. Conf. Data Mining, ICDM.
1051–1056. https://doi.org/10.1109/ICDM.2017.137.

39. M. Injadat, F. Salo, A.B. Nassif, A. Essex, A. Shami, (2018). Bayesian Optimization
with Machine Learning Algorithms Towards Anomaly Detection, 2018 IEEE Glob.
Commun. Conf. 1–6. https://doi.org/10.1109/glocom.2018.8647714.

40. T.Chen, C.Guestrin, XGBoost: a scalable tree boosting system, arXiv preprint
arXiv:1603.02754. http://arxiv.org/abs/1603.02754.

41. K. Arjunan, C.N. Modi, (2016). An enhanced intrusion detection framework for
securing network layer of cloud computing, ISEA Asia Secure. Prev. Conf. 2017,
ISEASP 2017. (2017) 1–10. https://doi.org/10.1109/ISEASP.2017.7976988.

42. I. Rish, (2001). An empirical study of the naive Bayes classifier, IJCAI 2001 Work.
Empir. methods Artif. Intell.,, 41-46.

43. W. Yin, K. Kann, M. Yu, and H. Sch¨utze, (2017). Comparative Study of CNN and
RNN for Natural Language Processing, arXiv preprint arXiv:1702.01923.
https://arxiv.org/abs1702.01923.

44. I. Ilievski, T. Akhtar, J. Feng, C.A. Shoemaker, (2017). Efficient hyperparameter
optimization of deep learning algorithms using deterministic RBF surrogates, 31st
AAAI Conf. Artif. Intell. AAAI 2017. 822–829.

45. Y. Bengio, (2000). Gradient-based optimization of hyperparameters, Neural Comput.
12 (8) 1889-1900.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2397

46. B. James and B. Yoshua, (2012). Random Search for Hyper-Parameter Optimization,
J. Mach. Learn. Res. 13 (1), 281–305.

47. J. Snoek, H. Larochelle, R. Adams, (2012). Practical Bayesian optimization of machine
learning algorithms Adv. Neural Inf. Process. Syst. 4, 2951-2959.

48. S. Sanders, C. Giraud-Carrier, (2017). Informing the use of hyperparameter
optimization through meta-learning, Proc. - IEEE Int. Conf. Data Mining, ICDM.
1051–1056. https://doi.org/10.1109/ICDM.2017.137.

49. S. Lessmann, R. Stahlbock, S.F. Crone, (2005). Optimizing hyperparameters of support
vector machines by genetic algorithms, Proc. 2005 Int. Conf. Artif. Intell. ICAI’05. 1,
74–80.

50. F. Itano, M.A. De Abreu De Sousa, E. Del-Moral-Hernandez, (2018). Extending MLP
ANN hyper-parameters Optimization by using Genetic Algorithm, Proc. Int. Jt. Conf.
Neural Networks. 1–8. https://doi.org/10.1109/IJCNN.2018.8489520.

51. X. Yan, F. He, Y. Chen, (2017). A Novel Hardware / Software Partitioning Method
Based on Position Disturbed Particle Swarm Optimization with Invasive Weed
Optimization, 32 340–355. https://doi.org/10.1007/s11390-017-1714-2.

52. Q. Yao et al., (2018). Taking Human out of Learning Applications: A Survey on
Automated Machine Learning, arXiv preprint arXiv:1810.13306,
http://arxiv.org/abs/1810.13306.

53. M.Y. Cheng, K.Y. Huang, M. Hutomo, (2018). Multi objective Dynamic Guiding PSO
for Optimizing Work Shift Schedules, J. Constr. Eng. Manag. 144 1–7.
https://doi.org/10.1061/(ASCE)CO.1943- 7862.0001548.

54. L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, (2012). A novel
bandit-based approach to hyperparameter optimization, J. Mach. Learn. Res. 18, 1–52.

55. K. Eggensperger, F. Hutter, H.H. Hoos, K. Leyton-Brown, (2015). Efficient
benchmarking of hyperparameter optimizers via surrogates, Proc. Natl. Conf. Artif.
Intell. 2, 1114–1120.

56. J. Wang, J. Xu, and X. Wang, (2018). Combination of Hyperband and Bayesian
Optimization for Hyperparameter Optimization in Deep Learning, arXiv preprint
arXiv:1801.01596. https://arxiv.org/abs1801.01596.

57. F. Pedregosa et al., (2011). Scikit-learn: Machine learning in Python, J. Mach. Learn.
Res., 12 2825–2830.

58. Tim Head, MechCoder, Gilles Louppe, et al., (2018). scikitoptimize/scikitoptimize:
v0.5.2. https://doi.org/10.5281/zenodo.1207017.

59. J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, D.D. Cox, (2015). Hyperopt: A Python
library for model selection and hyperparameter optimization, Comput. Sci. Discov. 8,.
https://doi.org/10.1088/1749- 4699/8/1/014008.

60. M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. De Moor, (2014). Easy
Hyperparameter Search Using Optunity, arXiv preprint arXiv:1412.1114,
https://arxiv.org/abs1412.1114.

Journal of Northeastern University
Volume 25 Issue 04, 2022

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

2398

61. S. Falkner, A. Klein, F. Hutter, (2018). BOHB: Robust and Efficient Hyperparameter
Optimization at Scale, 35th Int. Conf. Mach. Learn. ICML 2018. 4, 2323–2341.

62. R. S. Olson and J. H. Moore, (2019). TPOT: A tree-based pipeline optimization tool
for automating machine learning, Auto Mach. Learn, 151- 160.
https://doi.org/10.1007/978-3-030-05318-5-8

