
JOURNAL OF NORTHEASTERN UNIVERSITY 

Volume 25 Issue 04, 2022  ISSN: 1005-3026  https://dbdxxb.cn/  Original Research Paper 

Submitted: 16/11/2022        Accepted: 05/12/2022 

2382

                                                                                 

                                                                 
 

HYBRID RANDOM-GRID OPTIMIZATION TECHNIQUES FOR A MALARIA 
PREDICTION USING MACHINE LEARNING ALGORITHMS 

 
Yusuf Aliyu Adamu and Jaspreet Singh 

School of Engineering GD Goenka University Sohna 12203 Haryana, India 
aliyuadamuyusuf@gmail.com 

ABSTRACT 
Algorithms for machine learning have been commonly used in many applications and fields. 
Diseases like malaria can be predicted using machine learning algorithms to create a suitable 
and precise model that predicts when, how, and where the outbreak will occur. The model 
performance can be improved using various strategies, such as ensemble methods or fine-
tuning the hyper-parameters. Choosing a proper hyper-parameter configuration impacts the 
model accuracy, so it must fit well to improve the performance even though different 
optimization techniques exist, each with its benefits and disadvantages when used to solve 
various tasks. When working with hyper-parameter optimization strategies, a greater 
understanding of how machine learning models work is usually necessary. In this study, a 
hybridized form of Random-Grid optimization is proposed and applied to the three standard 
machine learning algorithms; K-nearest Neighbors, Random Forest, Support Vector Machine 
and their ensemble. It works by doing a randomized search to obtain the best hyper-parameters 
and then using it in a grid search to minimize the time it will take to search for the optimal 
combination of hyper-parameters. The grid and the random search work together to obtain the 
optimal hyper-parameters to improve the model accuracy by specifying the number of 
iterations to be performed when looking for the optimal model. The proposed technique is 
compared with well-known techniques such as Bayesian optimization, the Grid search, 
Random Search, genetic algorithm, and the particle swamp and evaluated using the malaria 
dataset obtained from the World Health Organization. The proposed technique improved the 
prediction accuracy for each base learner through an experimental study, and the ensemble 
method gives better results for HRGO-ensemble, HRGO-RFC, HRGO-SVM, and HRGO-
KNN with 97%, 96%, 95 and 93%, respectively. 
Keywords: Malaria, Machine Learning Algorithms, Hyper-parameter, Genetic Algorithm, 
Particle Swarm Optimization, Bayesian Optimization. 
 
1.0 INTRODUCTION 

 
A parasite that typically infects mosquitoes that feed on humans causes malaria, a dangerous 
and occasionally fatal infectious disease. According to the world health organization, there 
were more than 200 million reported malaria cases globally [1]. The year 2020 saw a surge in 
malaria infections in Africa due to the global coronavirus pandemic that claimed many lives. 
The primary factor contributing to the high fatality rate is the lack of immediate and proper 
assessment of malaria treatment [2]. Numerous investigations indicated that non-climatic and 
atmospheric elements play a substantial role in predicting the frequency of malaria outbreaks 
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in society. Technology improvements enable early prediction and preventive mechanisms, 
giving government and non-government organizations more time to prepare and stop the spread 
of diseases that could otherwise claim many lives. 
In several application domains, such as user behaviours, computer vision, health care, 
recommendation systems, and natural language processing, machine learning has recently 
emerged as one of the most efficient techniques [3]. It has many benefits like robustness, 
relatively cheap computation, generality, and better performance. Different algorithms are 
appropriate for solving various types of issues [4]. Owing to its adaptability and efficiency in 
resolving data analytics-related issues [5]. However, building an effective model requires a 
series of processes because of its complexity and time-consuming nature in identifying an 
appropriate algorithm and tuning its hyper-parameters [6]. Researchers employed numerous 
methods as predictive models to improve model accuracy by reducing variance and limiting 
model bias. As a result, algorithms perform better than others at producing correct results based 
on the available problems to be solved [7]. Researchers also developed enhanced ensemble 
techniques to increase the efficiency performances of the classifiers [8]. Researchers are 
constantly working to boost the accuracy of their methods and procedures. The right 
combination of hyper-parameter tweaking improves the model's accuracy and efficiency. 
There are two parameters: the model parameter, which is set up and modified as the actual 
training process progresses, and the hyper-parameter, which works before training a model. 
Hyper-parameters specify the model architecture and cannot be predicted effectively from data 
learning [9]. Hyper-parameters are variables used to set up a model or specify how to minimize 
loss function [10]. Constructing a model architecture with the ideal hyper-parameter tuning is 
the primary component of creating an efficient learning model, especially for deep neural 
networks and tree-based models [11]. However, the tuning approach varies between algorithms 
because it may be discrete, categorical, or continuous [12]. The hyperparameter can be tuned 
manually [13]. It is ineffective for some issues due to the complicated nature of models, many 
hyper-parameters, non-linear hyper-parameter interactions, and time-consuming model 
evaluations. These circumstances lead to hyper-parameter optimization (HPO) [14]. 
Automating the hyper-parameter tuning process and enabling its efficient application in 
machine learning models are the primary goal of hyper-parameter optimization [6]. 
It is crucial to pick the ideal optimization method to find the best hyper-parameters. 
Conventional methods are not appropriate for all optimization situations since many hyper-
parameter optimization problems are not convex and could result in the local optimum rather 
than the global one [15]. The most popular conventional optimization technique is the gradient 
descent-based approach, which continuously adjusts hyper-parameters by determining their 
slope [16]. Decision theoretic approaches, metaheuristic algorithms, multi-fidelity techniques, 
and Bayesian methods are better for optimization problems because they can more accurately 
identify conditional, categorical, and discrete hyper-parameters [10]. Using the optimization 
technique to alter the hyper-parameters of the models improved their computational complexity 
and performance. "Hyper-parameter optimization" aims to efficiently automate the hyper-
parameter tuning process using machine learning models to solve real-world issues [5]. After 
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the hyper-parameter optimization process, the model architecture would be optimal as 
expected. Optimization methods are necessary to increase the performance of machine learning 
models and decrease the time spent tuning hyper-parameters, especially for models with more 
hyper-parameters. It also helps find the optimal model for a given task when the same threshold 
of hyper-parameters is used [10]. 
The grid search (GS) method creates hyper-parameters search space, identifying the possible 
hyper-parameter combinations inside a fixed region of hyper-parameters value [17]. Random 
Search (RS) chooses combinations of hyper-parameters randomly from the search space while 
utilizing constrained resources and execution time [18]. Hyper-parameters are treated 
independently in both grid and random search. Training a learning model requires an 
appropriate amount of time and space. Bandit-based algorithms like the hyper-band technique, 
a more excellent version of random search, frequently use multi-fidelity optimization 
techniques to handle jobs with limited resources [19]. Although using proper hyper-parameter 
optimization techniques, machine learning models perform much better. Though each 
optimization technique has pros and cons, the choice is made based on the task. 
As the number of parameters increases, so does the number of evaluations, making GS an 
inefficient HPO method for high dimensionality hyper-parameter configuration unless 
configuration space for hyper-parameter is limited [20]. Because each evaluation is 
independent, RS is simple to parallelize, efficient, capable of exploring a more extensive search 
space, and resource-allocated. Reducing the possibility of wasting time on a limited, irrelevant 
search space. Its limitation is that each iteration's evaluation is independent of previous 
evaluations [18]. GS and RS issues can be solved by creating new optimization techniques 
using records from previous evaluations to determine the subsequent evaluation and obtain 
optimal hyper-parameters. 
Proper optimization algorithm selection necessitates understanding the various ML models 
and problems. This paper makes the following contributions: 

1. It examines standard ML algorithms and their key hyper-parameters. 
2. It examines standard HPO techniques to assist in their application to various ML 

models through appropriate algorithm selection in practical problems. 
3. It combines the strength of the Grid and Random search to propose a newly 

hybridized form of Random-grid optimization (HRGO), which will help to know the 
appropriate hyper-parameters combination to design a better model. 

4. It ensemble the classifiers used and compares it with an optimized ensemble version 
of the proposed algorithm 
  

The experiment was carried out using a malaria dataset from the world health organization. It 
works by doing a randomized search to obtain the best hyper-parameters and then using it in a 
grid search to minimize the time it will take to find the optimum combination. The grid and a 
random search work together to obtain the best hyper-parameters to improve the model 
performance. The proposed HRGO technique is used to observe the effect of hyperparameters 
on the individual model and the ensemble. Tuning hyperparameters of the model inside the 
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optimal ensemble will result in better prediction accuracy. The performances are compared 
with well-known optimization techniques such as Bayesian optimization, Grid search, Random 
Search, genetic algorithm, and particle swamp optimization. Random Forest, SVM, and KNN 
are the machine learning algorithms used and the stacking method of an ensemble for the 
experiment. The paper begins with an introduction and briefly explains optimization techniques 
in the second section of related work and the algorithms employed. It then moves on to section 
three, where the techniques and approaches used for the performance metrics are analyzed, and 
the fourth section describes the finding and discussions before concluding. 
 
2.0 RELATED WORK 
Statistical modelling and Machine learning algorithms are commonly used for the prediction 
process. All of these methods, along with computational engineering models, are vital for 
forecasting and decision-making [21]. Climatic factors play a significant role in malaria 
transmission [22]. Rainfall, be it plenty or inadequate, has been discovered to have an impact 
beyond just the risk of malaria [23]. Temperature and rainfall are the key factors attributed to 
malaria spread [24]. 
 
Generally, formulating machine learning models requires tuning a hyper-parameter using 
optimization techniques to fit a model to specific problems. An algorithm for machine learning 
includes supervised semi-supervised, unsupervised, or reinforcement learning. Classification 
or regression problems are examples of supervised learning, which refers to the methods that 
relate input features to a target set of labelled data [25]. K-nearest neighbour, linear models, 
deep learning, decision tree-based, support vector machines, and Naive Bayes algorithms are 
all supervised learning [26]. Unsupervised learning algorithms, which include dimension 
reduction and clustering, are used to recognize patterns in unlabeled data [27]. Semi-supervised 
learning techniques are generic models, self-training, and other techniques [28]. Different 
learning algorithms are combined to improve the model's performance, such as bagging, 
voting, stacking, AdaBoost, and XGBoost [29]. When employing different configurations of 
hyper-parameters, it is possible to generate an optimal predictive model function that varies 
based on the model's architecture. Different loss functions, including information gain, cross-
entropy, hinge loss, contrast loss, and the square of Euclidean distance, are used in supervised 
learning [30]. In order to create various models, machine learning algorithms employ various 
hyper-parameter setups. 
 
K-Nearest Neighbors; The data point is classed by calculating the separations between the data 
points and determining which class most of its k-Neighbors be. The model will underfit if the 
value of k is small and overfit if it is too large, requiring more computation time. Therefore, k 
is the paramount hyper-parameter to consider [31], depending on the problem to deal with 
during prediction. While in a support vector machine, the concept of data point mapping is 
linearly separable from a low dimension into a high-dimensional space [32]. The hyper-plane 
is the root cause of the categorization boundary that separates data points [33]. A kernel 
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function measures the similarity between data points, which would be the hyper-parameters to 
be tuned [34] 
 
Furthermore, the Decision Tree classifier is a tree-based structure for making decisions [35]. It 
has three components: the root node, which represents the overall data; the sub-node; and the 
leaf node. Techniques are employed to split the data while considering several features [36]. 
The maximum depth of a tree is one of the primary hyper-parameters of the decision tree 
algorithm. If the tree has more subtrees as it goes down, an accurate decision can be obtained 
[37]. Other hyper-parameters would be tuned to have a more effective split by setting 
measuring functions that can either be Gini impurity or information gain [38]. The model 
performance can increase by combining several decision trees, like an extra tree, random 
forests, and extreme gradient boosting models. In Random Forest, decision trees are 
constructed on several randomly selected subsets of data and choose the class with the highest 
majority vote to be the overall classification outcome [39]. XGBoost is an ensemble model that 
uses boosting and gradient descent methods to improve the performances and the speed of a 
decision tree [40]. An extra tree uses the whole sample data to formulate a decision tree and 
choose the feature set randomly [41]. 
 
Finally, naïve Bayes uses the Bayes theorem concept [42]. Smoothing parameters are the 
continuous hyper-parameters that are in the Bayes theorem. In this case, there is no need to 
tune the hyper-parameter. However, various fields are employed in the deep learning model, 
such as natural language processing, computer vision, and machine translation. The idea of 
artificial neural networks serves as the foundation for these models. Deep belief networks, deep 
neural networks, feedforward networks, recurrent neural networks, and convolutional networks 
are types of deep learning architecture [43]. Since the models all have comparable hyper-
parameters that need to be tweaked, they gain more from HPO because their underlying neural 
networks are similar. 
  
Babysitting is one of the optimization techniques that are manual and called the grad student 
descent or trial and error method because it has a simple workflow that deals with the 
fundamental hyper-parameter tuning technique [13]. After designing the model, the user will 
give possible hyper-parameters based on their guessing, experience, or previously evaluated 
outcomes. The process will repeatedly continue until the desired result is satisfied by the user 
by reaching optimal hyperparameter values. However, this technique is not feasible for some 
problems due to complex models, several hyper-parameters, time spent for model evaluation, 
and nonlinear hyper-parameters interaction [14]. These features have led to the development 
of techniques for automatically optimizing hyperparameters [44]. The gradient descent method 
minimizes the cost function to reduce mistakes and increase model correctness. By computing 
the gradient of the variable, a random point is chosen and arbitrarily chosen a direction to 
identify the optimal and advance towards the optimal, which is in the opposite direction of the 
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most significant gradient, to find the next point [45]. Since it is challenging to reduce errors, 
optimization stops when there is no improvement, at which point a local minimum. 
 
The grid search employs an exhaustive search or brute-force approach to evaluate all potential 
grid-given combinations to investigate the hyper-parameter configuration space [5]. It analyses 
the Cartesian product of a specific set of user-supplied data [11]. Whenever the available hyper-
parameter configuration space is limited, it works well. While in a random search, the technique 
picks and trains a specified number of observations using a random selection between the lower 
and higher boundaries as potential hyper-parameter values [46]. When the configuration region 
is enormous, a global optimum can be quickly found, even on a minimal budget. Furthermore, 
since every evaluation is independent, resources can then be shared concurrently, lowering the 
possibility of spending time on the search space. Bayesian optimization is an iterative 
procedure for hyper-parameter optimization that bases its computations on the value already 
tested to establish the following potential evaluation points [47]. First, it generates the 
appropriate hyper-parameter configuration using two elements, the acquisition function 
surrogate model [48]. Then, the surrogate model is updated each time the objective function is 
analyzed. Finally, it uses the previous result to detect the optimal hyperparameter 
combinations. That makes it more efficient, and methods are effective on stochastic, non-
convex, and non-continuous objective functions. The core disadvantage is that it is difficult to 
reach a global optimum if it fails to stabilize between exploration and exploitation. Instead, it 
might just go to the local minimum. Furthermore, the model cannot work parallelized because 
the intermediate results depend on one another [12]. According to the posterior distribution, 
exploitation entails sampling in the existing location where the global optimum is the most 
likely to occur, while exploration entails sampling instances in areas that still need to be 
checked. 
 
The genetic algorithm is based on evolutionary theory as it is one of the heuristic methods. It 
tests the survival capability and adaptability of individuals. Those with the best are likely to 
pass them on to the next generation and inherit their parents' worst and best characteristics [49]. 
Weaker ones are likely to disappear, and better ones have offspring more capable of surviving. 
After so many generations, only those with better adaptability will be globally optimal [50]. A 
particle swarm optimization approach uses an evolutionary algorithm widely [51]. It emerged 
from biological populations that reflect people's social behaviours [52]. It enables groups of 
particles to move across the search space in an essentially random pattern [14]. This algorithm 
determines the best solutions by recognizing and exchanging information with each particle in 
the group. After each iteration, they share information as they operate independently. That 
makes it easy to parallelize, which leads to an improvement in model efficiency [14]. A global 
optimum can be achieved only by performing a good population initialization through prior 
knowledge or by employing approaches designed primarily for discrete hyperparameters [53]. 
Finally, Hyperband dynamically chooses a manageable number of configurations [54]. It 
balances model resource usage and its performance mostly with limited resources and time, 
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which makes it more efficient [55]. However, every hyper-parameter is handled separately., 
without considering their correlations [56]. As a result, it is inefficient for algorithms like 
DBSCAN, logistic regression, and SVM that use conditional hyperparameters. 
 
3.0 METHODOLOGY 
In this section, we develop a proposed model called hybrid Random-grid optimization (HRGO) 
to enhance the performance of the models, and the outcomes of applying hyper-parameter 
optimization techniques are contrasted, analyzed, and optimized on three models due to their 
adjustable hyper-parameters. Possible hyper-parameters used in SVM are the kernel type and 
penalty parameter. KNN only uses K as the primary hyper-parameter to determine each 
sample’s nearest Neighbors. Random Forest has a variety of multiple hyper-parameters to 
adjust. The model performances of different classifiers, k-nearest Neighbors (KNN), Random 
Forest classifier (RFC), Support Vector Machine (SVM), and their stacking ensemble using 
logistic regression are compared with the optimized HRGO of all the classifiers. The malaria 
dataset obtained from the World Health Organization contains different features such as the 
percentage of the population using at least basic sanitation and drinking water, the total number 
of yearly malaria reported cases, a total Incidence of malaria, and climatic features of an 
average temperature and average Rainfall. Algorithms used 80 per cent and 20 per cent for 
training and testing, respectively. Finally, Grid Search, Random Search, Particle Swarm 
Optimization, Genetic Algorithm, and Bayesian Optimization were also the techniques 
implemented during the comparison to examine the effects of using hyper-parameter 
optimization approaches on the classifiers. The machine learning models and HPO were 
analyzed using Python libraries like Sklearn [57], Skopt [58], Hyperopt [59], Optunity [60], 
BOHB [61], and TPOT [62]. The machine learning algorithms are compared using various 
criteria such as accuracy, macro average, precision, recall, and weighted average to discover 
which works better in this specific use case and which is most likely to perform equally well 
given a similar dataset. 
Characters define as False Positive (FP), False Negative (FN), True Positive (TP), True 
Negative (TN). 

The performance of the classifier's default configuration is measured by considering how 
classifiers identify an instance into the category of TP, TN, FP, and FN. Also measured 
accuracy, precision, and recall using the classification report. Accuracy is the key performance 
indicator for classifiers with the appropriate hyper-parameter setting. Therefore, the same 
configuration space for the hyper-parameter is maintained to evaluate all the optimization 
techniques. For example, KNN has only one hyper-parameter to utilize by setting it to a specific 
range. They additionally configured for Random Forest and SVM in the same configuration 
area. 
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3.1 Proposed HRGO Algorithm 

This Algorithm shows how the hybrid form of Random and Grid search can work together in 
choosing the best combination of hyper-parameters named hybrid random grid optimization 
(HRGO). 

Table 1: Symbols and their description used in the proposed algorithm 

S/N Symbol Description 
1 S Set of all values 
2 𝑆௢ Value to be selected in the search space 

3 f (𝑆௢) The Function of value 

4 𝑆௡௘௪ New independent value after the increment 

5 𝑆௭ Last value in search space 

6 K Value to increment 

Table 1 indicates symbols and their description that are used in our newly develop HRGO 
techniques. The steps are: 

Step 1: Select an initial and current value for each 𝑆௢ at random where 𝑆௢ES. 

Step 2: Calculate f (𝑆௢) and put K=0 

Step 3: if 𝑆௢ == optimal value, stop with progress 

Step 4: Generate new independent values say 𝑆௡௘௪(K+1) E S in accordance with the selected 
probability distribution 

 if f(𝑆௡௘௪(K+1) < f (𝑆௭) 

          Set 𝑆௭ିଵ = 𝑆௡௘௪(K+1)  

          Else 

           𝑆௭ିଵ = 𝑆௭ 

Step 5: The process will end when the predetermined number of evaluations has been met. 

Step 6: If the results are optimal, choose that option; otherwise chose 𝑆௡௘௪, end if 

Step 7: Try on all selected values of 𝑆௢,  𝑆௡௘௪(k+1) 

Step 8: Return the best results after the allotted number of iterations. 
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3.2 How the Algorithm Work 
 
Since grid search and random search techniques performed independent experiments in 
creating models with different hyper-parameters in isolation, we can use the information from 
one random search to improve the grid search experiment. First, use a randomized search to 
obtain the best hyper-parameter and then use it in a grid search to minimize the time it will take 
to search for the optimum hyper-parameters. In this case, the two techniques work together to 
obtain the best hyperparameters combination that improves the model performance by 
specifying the number of iterations to be performed when looking for the best model. The 
random search allows values to be sampled randomly from a statistical distribution for each 
hyper-parameter. The hyper-parameter values of the model will be set by sampling the defined 
distribution for each iteration. The grid search can then be enhanced to thoroughly search for 
an optimal solution following a random search to focus on finding the best value for the crucial 
hyper-parameter by reducing the results. Finally, a combination of all the hyper-parameter 
values obtained from a random search with some additional values within the regions where 
the model will perform well is utilized and used to build a model by evaluating the hyper-
parameter and selecting the ones that give the best result. 
All of the employed optimization techniques have their performance metrics compared: 
 

1. For all optimization approaches, the number of iterations is 100. 
2. The experiment is rerun with different random seeds, and we use majority voting to 

obtain the best result. 
3. The most accurate model architecture with the best hyper-parameter configuration is 

selected. Certain constraints have been taken into account when comparing the 
optimization algorithms chosen. 

4. All optimization methods use the same configuration space for the k-nearest Neighbors, 
where only one parameter needs to be optimized and is set between 1 to 50 for the 
assessment of each optimization method. 

 
Our concern is improving the model performance's accuracy, which is only possible when an 
appropriate selection of hyper-parameters is made in the models or their ensemble. Since 
predicting the best values for hyper-parameters is difficult, there is a need to try all the possible 
values to have the optimal one. The HRGO method proposed is used in all the selected 
classifiers and compared their performances with default running and individual optimization 
techniques. 
 
Table 2: Hyper-parameter setting space for the Proposed HRGO Technique 
 Classifiers Hyper-parameters Data Type Specification of search space 

HRGO-KNN  n-neighbors Int  [1, 100] 
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HRGO-RFC n_estimators 
max_depth 
min_sample_split 
max_sample_leave 
criterion 
max_features 

Discrete 
Discrete 
Discrete 
Discrete 
Categorical 
Discrete 

start=200, stop=2000, num=10 
(10,1000,10) 
[1,3,4,5,7,9]  
[1,2,4,6,8]  
[‘Gini’, ‘entropy’] 
'auto','sqrt','log2' 

HRGO-SVM C 
Kernel 
 
gamma 
Randon_state 
 

Float 
Float 
  
Int 
Int 

[1.0] 
‘linear’,’rbf’,’poly’,’sigmoid’,’pre
computed’ 
‘auto’, ‘scale’ 
Instance or None 

 
Table 2 above describes all the hyper-parameters’ configuration and the configuration search 
space for all the classifiers used for the newly proposed techniques. 
4.0 RESULT AND DISCUSSION 
Figure 1 indicates how variables used in the analysis correlated with one another. It also shows 
a reasonable correlation between malaria incidence and Rainfall and moderately correlated 
with Temperature, Basic drinking water services, and sanitation services, and less correlation 
exists with other features. Three models were trained and assessed as a baseline model with 
their default hyper-parameter setting. We measured the performances of our model by 
calculating the accuracy, AUC, weighted average, Macro average, precision, recall, and F1 
score. 

 
Figure 1: Heat map Correlation of the variables used for analysis 
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The results provided in Table 3 summarize the confusion matrix for all the classifiers and found 
that adopting optimization approaches is necessary because using the default hyper-parameters 
setting does not produce the best model performance in our results. It indicates how the models 
classified instances correctly and incorrectly. It also shows that the proposed HRGO ensemble 
can classify the data into TP, TN, FP, and FN more than all other classifiers. It is found that 
HRGO-SVM, HRGO-RFC, and HRGO-KNN using the Table 2 hyper-parameters 
configuration has more chance of classifying the instances. Each classifier has its advantage 
depending on what the user is looking for in the analysis. The ensemble of classifiers produces 
a better categorization of the instances, followed by Random Forest classifiers, SVM, and 
KNN.   
Table 3: Default classifiers and proposed Confusion Matrix  
  PREDICTED 

A
ct

ua
l 

 RFC KNN SVM RF_Kn_Sv
m 

ENSEMB
LE 

HRGO
-RFC 

HRGO
-KNN 

HRGO
-SVM 

HRGO_ 
ENSEMB

LE 

 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 19

0 
1
1 

16
4 

3
7 

18
1 

2
0 

192 9 19
6 

5 19
1 

1
0 

20
1 

0 201 2 

0 9 9
0 

39 6
0 

55 4
4 

8 91 8 9
1 

10 8
9 

14 8
5 

7 90 

 
The performance of the model’s default hyper-parameters and HRGO is shown in Table 4; the 
result of the proposed technique clearly shows that HRGO outperforms all other classifiers, 
particularly HRGO-ensemble with accuracy, recall, precision, macro average, F1- score, 
weighted average and AUC with 97%, 99%, 96%, 96%, 97%, 97% and 97% respectively. 
Based on the default configuration, the ensemble is optimal with 96% F1-score, 94% macro 
average, 94% weighted average, 96% recall, 96% precision, and 94 % accuracy, followed by 
the Random Forest classifier with 93% SVM and KNN with 75% each.  
Table 4: The performance classification of classifiers using default hyper-parameters and 
proposed method 
Classifiers Accuracy 

%  
Recall 
% 

Precision 
% 

Macro  
average 
% 

F1-
Score 
% 

Weighted 
average % 

AUC 
% 

Random Forest 93 95 95 92 95 93 93 
KNN 75 82 81 71 81 75 93 
SVM 75 90 77 73 83 74 67 
RF_Knn_Svm 
ENSEMBLE 

94 96 96 94 96 94 94 

HRGO-RFC 96 98 96 95 97 96 96 
HRGO-KNN 93 95 95 92 95 93 92 
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HRGO-SVM 95 100 93 97 97 96 93 
HRGO_Ensemble 97 99 96 96 97 97 97 

 
Table 5 summarizes the default configuration, selected optimization techniques and proposed 
HRGO methods applied to machine learning algorithms and provides the accuracy of each 
optimization evaluated. Each optimization technique is evaluated based on accuracy, indicating 
that the accuracies vary across each technique. 
Table 5: Accuracy performance analysis of applying the HPO on the classifiers 
Optimization Random Forest SVM K-Nearest Neighbor 
Default Configuration 93% 75% 75% 
Grid Search 96% 78% 94% 
Random Search 86% % 94% 
Genetic Algorithm 96% 77% 95% 
Swarm Particle Algorithm 95% 77% 93% 
Bayesian Optimization 87% 78% 93% 
Proposed HRGO 96% 95% 93% 

 
The accuracy of default configuration is 93% for Random Forest, 75% for each KNN, and 
SVM, which increased when using any optimization techniques. Comparing the overall 
performance of all the individual classifiers and their optimization techniques shows that the 
proposed HRGO method gives more 96%, 95%, and 93% accuracy than all other optimization 
techniques when using Random Forest, SVM, and KNN, respectively. Therefore, it is essential 
to utilize optimization techniques to obtain optimal results. 
5.0 CONCLUSION 
With so many applications in the realm of research, machine learning algorithms have emerged 
as the method for solving data-related issues. Machine learning models' hyper-parameters must 
be tweaked to fit a particular dataset for solving practical problems. Although manually 
adjusting hyper-parameter is challenging and highly expensive. It has become vital since the 
rate at which data use has dramatically grown in real-world applications. The primary concern 
for choosing appropriate hyper-parameters is to increase the model performance. The five 
optimization techniques chosen are grid search, random search, Genetic algorithm, Bayesian 
optimization, and particle swarm. Each of the techniques has an accuracy higher compared to 
the default configuration. Our experiment shows that the accuracy increased when using the 
proposed HRGO technique, which gives 97%, 96%, 95, and 93% for HRGO-ensemble, 
HRGO-RFC, HRGO-SVM and HRGO-KNN respectively. Optimization approaches are 
selected based on the algorithm and the hyper-parameters that ensure the model is well-fitted. 
The newly developed technique can be used well for predicting malaria by giving better 
accuracy than the existing techniques. The effect of tuning the hyperparameter of three models 
and their ensemble is observed. 
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