ISSN: 1005-3026

https://dbdxxb.cn/

ВЛИЯНИЕ ИОННОЙ ИМПЛАНТАЦИИ КИСЛОРОДА НА ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПЛЕНОК ∩ – РЪ*Те*

Коканбаев И.М

к.ф.-м.н., доцент.Кокандского государственного педагогического инстштута, Узбекистан.

Ионная имплантация кислорода приводит к уменьшению электропроводности (σ)пленок. Уменьшение электропроводности и холловской концентрации ектронов (n_H) имплантированных пленок n - PbTe при отжиге в вакууме. При термоотжиге на воздухе интенсивность уменьшения электропроводности в пленках и имплантированных, и неимплантированных кислородом гораздо выше, чем при отжиге имплантированных образцов в вакууме

Пленки теллурида свинца – основной материал для n – ветвей тонкопленочных термопреобразователей [1]. Нам известно что ответственным за деградацию свойств пленок n – PbTe на воздухе является процесс интенсивного взаимодействия с кислородом, который сводится к его адсорбции на поверхность пленок и ГК. Наряду с этими процессами происходит проникновение кислорода в объем кристаллитов. Для выявления вклада каждого из перечисленных выше процессов необходимо применять методы исследования, исключающиеся побочные влияния остальных процессов. Нами исследовано вклад объемной диффузии кислорода на электропроводность, коэффициент термоэдс и концентрацию электронов в пленках n - PbTe, полученных термовакуумной конденсацией на подложку ПМ-1. Для стимулирования объемной диффузии кислорода в пленках n – PbTe в их приповерхностный слой при комнатной температуре в вакууме $5 \cdot 10^{-6}$ Торр имплантировались ионы 0^+ на ионно-лучевом ускорителе с ускоряющим напряжением 100 кэВ. Дозы Φ внедренного кислорода варьировались от 10^{12} до 10^{16} см⁻ 2 при плотности тока от 0,075 до 2 мкА/см². Проективная длина ионов 0⁺ с энергией 100 кэВ, рассчитанная стандартным способом [2], составляла 0,7-0,8 мкм. Для стимулирования диффузии кислорода из приповерхностными слоя толщиной в проективную длину в объем, пленки отжигались в вакууме 5·10⁻⁶ Торр при 470 К. Вакуум исключал действие двух других механизмов взаимодействия пленок с кислородом: во-первых отжиг в вакууме приводит к десорбции кислорода со свободной поверхности пленок и ГК [3], во-вторых, отсутствует источник диффузии по ГК [3]. Поэтому все изменения физических параметров происходили за счет объемной диффузии.

Результаты исследований дозовой зависимости инверсии типа проводимости в пленках n — PbTe толщиной (0,5÷1,5) мкм приведены в табл. 1. В табл. -1 в скобках отмечен тип проводимости после отжига имплантированных пленок в вакууме при 470К в течении 1ч. Из табл. 1 видно, что в пленках, полученных при $T_K \le 560$ K, после имплантации ионами 0⁺.

Таблица 1.

Т _к , К	Тип проводимости					
	До импл.	После имплантации О ⁺				
		$(\Phi \cdot cm^{-2})$				
		10 ¹²	10 ¹³	10 ¹⁴	10 ¹⁵	10 ¹⁶
470	n	р	р	Р	p	p
480	n	р	р	р	р	р
500	n	р	р	р	р	р
520	n	n (n)	р	р	р	р
540	n	n (n)	р	p	p	p
560	n	n (n)	n (n)	n (p)	р	р
580	n	n (n)	n (n)	n (n)	n (p)	n (p)
600	n	n (n)	n (n)	n (n)	n (n)	n (n)
620	n	n (n)	n (n)	n (n)	n (n)	n (n)
640	n	n (n)	n (n)	n (n)	n (n)	n (n)

Дозовая зависимость инверсии типа проводимости в пленках n - PbTe толщиной ($0.5 \div$ 1,5) мкм наблюдается инверсия типа проводимости, а в пленках, полученных при $T_{\rm K} \ge$ 580К, после ионной имплантации инверсии типа проводимости не наблюдается. Отжиг в вакууме, проведенный в течение одного часа при 470 К в пленках, полученных при T_{K} =(600÷640)К, не приводит к инверсии типа проводимости. На рис. 1 показан характер изменения коэффициента термоэдс, электропроводности и холловской концентрации носителей в пленках n - PbTe, от дозы внедряемых ионов 0^+ . На рис.1 и 2 даны кривые изменения параметров пленок при внедрении определенной дозы ионов 0^+ и последующем отжиге в вакууме. Уменьшение электропроводности и увеличение коэффициента термоэдс после ионной имплантации можно объяснить следующим. Кислород в РbTe является акцепторной примесью [4] и, внедряясь в пленки при имплантации, на проективной длине l_i компенсируют действие донорной примеси. Концентрация электронов в слое толщиной l_i падает, за счет чего электропроводность этого слоя σ_i уменьшается, а коэффициент термоэдс α возрастает. Для образовавшейся после ионной имплантации двухслойной структуры электропроводность и коэффициент термоэдс легко рассчитать [5]

$$\sigma = \sigma_i \frac{l_i}{d} + \sigma_b \frac{d - l_i}{d}; \qquad \alpha = \frac{\alpha_i \sigma_i + \alpha_b \sigma_b}{\alpha_i + \alpha_b}, \qquad (.1)$$

где d- толщина, σ_b и α_b - исходные электропроводности и коэффициента термоэдс пленки. Если $\sigma_i \ll \sigma_b$

$$\sigma = \sigma_{b} \frac{d - l_{i}}{d}; \qquad \alpha = \alpha_{b} + \alpha_{i} \frac{\sigma_{i}}{\sigma_{b}}, \qquad (2)$$

откуда непосредственно видно уменьшение σ и возрастание α .

Copyright © 2022. Journal of Northeastern University. Licensed under the Creative Commons Attribution Noncommercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/ Для исследования пленок d \approx 3,4 мкм, так как l_i \approx 0,7-0,8 мкм, то $\sigma/\sigma_0 \approx 0,75 \div 0,8$, что практически точно соответствует данным рис.1. Кроме легирующего действия, внедряющиеся в пленку высокоэнергетические ионы примеси образуют в решетке, за счет взаимодействия с ее ионным остовом, радиационные дефекты.

После имплантации ионами кислорода пленки подвергались отжигу в вакууме (см. рис. 1 и 2). При отжиге в вакууме кислород диффундирует из слоя толщиной l_i остальной объем пленки. Концентрация электронов в пленке, часть которых захватывается на кислородные состояния, падает, что обуславливает уменьшение σ и рост α . По мере упорядочения профиля кислорода при отжиге параметры пленок выходят на насыщение. При длительном отжиге в пленках с большой дозой внедренного кислорода ($D = 10^{16} \text{ cm}^{-2}$) σ и *n* несколько увеличиваются, α уменьшается. Это, повидимому, связано с «залечеванием» радиационных дефектов в приповерхностном слое, концентрация которых тем больше, чем выше D.

Относительное изменение термоэлектрических параметров пленок после отжига практически не зависит от дозы O^+ , что свидетельствует об ограниченности концентрации электрически активных атомов кислорода в PbTe.

Сравнение настоящих результатов с данными по термическому отжигу пленок n - PbTe на воздухе [7, 3] показывает, что эффективность влияяния объемной диффузии кислорода на их свойства гораздо ниже эффективности диффузии по границам кристаллитов. Для стимулирования объемной диффузии кислорода из приповерхностного слоя (толщиной в проективную длину) в объем пленки образцы отжигали в вакууме $5 \cdot 10^{-6}$ Торр при 470 К, что исключало действие двух других механизмов взаимодействия пленок с кислородом: во-первых, отжиг в вакууме приводит к десорбции кислорода с поверхности пленок и границ кристаллитов [7], во –вторых, отсутствует источник диффузии по границам кристаллитов. Поэтому все изменения физических параметров пленок происходили за счет объемной диффузии. Для сравнения контрольные образцы, в которые не имплантировался кислород, также отжигались в вакууме в аналогичных режимах.

Эффект диффузии кислорода по ГК исследовался посредством термоотжига пленок на воздухе. Причем отжигу подвергались как свежее осажденные образцы, так и после имплантации кислорода. Достаточно большая толщина пленок практически исключала влияние адсорбированного на поверхность пленок кислорода. Отжиг проводился при 370 и 470 К. При этих температурах кислород не вступает в химические реакции с PbTe [7] и взаимодействие сводится лишь к сорбционным и диффузионным процессам.

Рис.1. Изменение электропроводности пленок n - PbTe при ионной имплантации (штриховые линии) и термическом отжиге в вакууме при 470 К после имплантации (сплошные линии). Доза внедренного кислорода Φ , см⁻²: (1)-10¹², (2)-10¹³, (3)-10¹⁵, (4)-10¹⁶[5]

Рис.2. Влияние ионной имплантации (штриховые линии) и термического отжига в вакууме при 470 К после имплантации (сплошные линии) на коэффициент термоэдс (1,2) и концентрацию электронов (3,4) в пленках n – PbTe. Доза внедренного кислорода Ф, см⁻²: 10¹⁵ (1,3); 10¹⁶ (2,4)[5]

Литература

1. Ивченко Е.Л., Пикус Г.Е. Фотогальванические эффекты в полупроводниках.-Проблемы физики полупроводников. Л.: Наука. -1980. -С. 262-268.

2, Титов В.В. Внедрение быстрых ионов в монокристаллы. -Препринт ИАЭ. -М. -1978. -35 С.

3. Коканбаев И.М., Атакулов Ш.Б. Термические и радиационно – стимулированные процессы в поликристаллических пленках халькогенидов свинца (монография). Фан.Тошкент.-1992.-96 с

4.Коканбаев И.М. Деградация термоэлектрических свойств пленок n – Pb*Te* в атмосферном кислороде //Инж.Физич.Журн. Минск. -2003. -Т. 76. - № 2. -С. 168-170.

5. Kokanbaev I.M., Ataqulov Sh.B. Oxygen diffusion to the bulk and crystalline boundaries in Pb*Te* //Solid State Communications. -1987. -V.61. – N.6. -P. 369-372.

6.Коканбаев И.М. О термоэлектрических свойствах пленок n – Pb*Te* //Инж.Физич.Журн. Минск. -2003. Т. 76. - № 2. -С. 166-167.

7. Коканбаев И.М. Механизмы термической и радиационной деградации тер-

моэлектрических пленок n – PbTe. Автореф. дисс.... канд. физ. - мат.наук.- Кишинев. - 1988 г. – 143 С.

 $Copyright @ 2022. \ Journal of Northeastern University. \ Licensed under the Creative Commons Attribution Noncommercial No Derivatives (by-nc-nd). \ Available at https://dbdxxb.cn/$

4368