ARITHMETIC NUMBER LABELLING FOR UNION GRAPHS

Dr. A. Uma Maheswari

Associate Professor \& Head, PG \& Research Department of Mathematics, Quaid - E-Millath
Government College For Women, Chennai - 600 002, umashiva2000@yahoo.com

A.S.Purnalakshimi

Research Scholar, aspurnalakshmi@gmail.com

Abstract

Graph labelling is an interesting and fast developing branch in graph theory. Graph labelling applications include genomics, electrical engineering, operations research, transcriptome analysis, Golomb rulers etc. In this paper, Arithmetic number labelling induced from arithmetic numbers of some standard graphs namely path, cycle, bull graph, star graph, bistar graph, jelly fish graph, tadpole graph and tree were studied. In this paper, Arithmetic number labelling of subdivided star graph $S\left(K_{1, n}\right)$ and union of two subdivided star graphs $S\left(K_{1, n}\right) \cup S\left(K_{1, m}\right)$, union of subdivided star graph with star graph $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right) \cup \mathrm{K}_{1, \mathrm{~m}}$, union of subdivided star graph with bistar graph $S(K, n) \cup B r, s$ are studied. Also, Python program code to generate the vertex labels of the union of subdivided star graph and bistar graph $S(K, n) \cup B r, s$ is given. Appropriate examples are given.

Keywords - Arithmetic number, Arithmetic number labelling, Subdivided star graph, Union Graph.

AMS classification: 05C78

Introduction

Assigning of integers as labels to the vertices ${ }^{[1]\{2\}[4][16][17]}$, edges ${ }^{[7][18][19][20]}$, faces ${ }^{[11]}$ and blocks ${ }^{[10][11][13][14][23][24]}$ to a graph is called graph labelling. The labelled graphs find its applications in image segmentation ${ }^{[5],}$ communication network ${ }^{[3]\{5\}}\{8\}[15]$, astrology ${ }^{[9]}$, medical ${ }^{[22\}}$ and data science ${ }^{[15]}$ and in assessing static and dynamic brain connectivity ${ }^{[25]}$. The challenging task is to obtain a label for a vertex, edge, face or block of a graph under restricted environment. Arithmetic number labelling with arithmetic numbers as basic parameter was introduced in 2022.In this paper, Arithmetic number labelling of subdivided star graph $S\left(K_{1, n}\right)$ and union of two subdivided star graphs $S\left(K_{1, n}\right) \cup S\left(K_{1, m}\right)$, union of subdivided star graph with star graph $S\left(K_{1, n}\right) \cup K_{1, m}$, union of subdivided star graph with bistar graph $S(K, n) \cup B r$, s is studied. Also, Python program code to generate the vertex labels of the union of subdivided star graph and bistar graph $S(K, n) \cup B r$, s is given. Appropriate examples are given.

Preliminaries

The following are the important definitions needed for this paper.

Definition 1: Arithmetic Number ${ }^{[12]}$

A number which has arithmetic mean of its divisors as an integer is named as Arithmetic number. The number 22 is an arithmetic number since the arithmetic mean of its divisors $1,2,11$, and 22 is 9 , an integer. $1,3,5,6,7,11,13$ are some of the arithmetic numbers.

Definition 2: Arithmetic number labelling ${ }^{[12]}$

An Arithmetic number labelling of a graph G is a one - to - one function. $f: v(G) \rightarrow W$, where W is the set of whole numbers.) that induces a bijection $f^{*}: E(G) \rightarrow\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)$, defined by $f^{*}(u, v)=|f(u)-f(v)|, \forall e=u v \in E(G)$. Arithmetic number graphs are those graphs which admit Arithmetic number labelling.
In this paper, Arithmetic number labelling is abbreviated as ANL.

Definition 3 ${ }^{[7]}$: The replacement of the edge ' e ' by the path (u, v, w) is the subdivision of an edge $e=u v$. If every edge of G is subdivided exactly once, then the resulting graph is called the subdivision graph $S(G)$.

Definition $4^{[7]}$: Consider two graphs U_{1} and U_{2} which have disjointed vertex sets V_{1} and V_{2} and disjoint edge sets E_{1} and $E_{2} . G=G_{1} \cup G_{2}$ is the union of graphs G_{1} and G_{2}. The union G has vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$. Union G has $p_{1}+p_{2}$ vertices and $q_{1}+q_{2}$ edges.

Definition $5^{[23]}$: The graph obtained from K_{2} by joining m pendant edges to one end of K_{2} and n pendant edges to the other end of K_{2} is the bistar graph $B m, n$.

MAIN RESULTS

Theorem 1: The subdivided star graph $S\left(K_{1, n}\right)$ admits ANL for $\mathbf{n}>1$. Proof:

Let $\mathrm{u}_{0}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ be the vertices of $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ and $\mathrm{u}_{0} \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ be the edges of subdivided star graph $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)$.

The function $\mathrm{f}: \mathrm{V}\left(\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right) \longrightarrow\left\{\mathrm{A}_{\mathrm{n}}\right\}$ is defined as
$\mathrm{f}\left(\mathrm{u}_{0}\right)=0$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{n}+\mathrm{k}}+\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right) ; 1 \leq \mathrm{k} \leq \mathrm{n}$
The induced edge labeling f^{*} is obtained as
$\mathrm{f}^{*}\left(\mathrm{u}_{0} \mathrm{u}_{\mathrm{k}}\right)=\mathrm{Ak} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{n}+\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$

Clearly from the definition of f and f^{*}, vertex and edge labels are distinct.
Thus, it is proved that subdivided star graph $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ admits ANL.

Example 1: Arithmetic number labelling for subdivided star graph $\mathrm{S}\left(\mathrm{K}_{1,5}\right)$.

Fig 1 Arithmetic number labelling for subdivided star graph $\mathrm{S}\left(\mathrm{K}_{1,5}\right)$

Thus, it is proved that subdivided star graph $\mathrm{S}\left(\mathrm{K}_{1,5}\right)$ admits ANL.
Theorem 2: The union of subdivided star graph and star graph, $S\left(K_{1, n}\right) \cup K_{1, m}$ admits ANL for $\mathrm{n}, \mathrm{m}>1$.

The function $\mathrm{f}: \mathrm{V}\left(\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right) \cup \mathrm{K}_{1, \mathrm{~m}} \rightarrow\left\{\mathrm{~A}_{\mathrm{n}}\right\}$ is defined as
$\mathrm{f}(\mathrm{u})=0$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{n}+\mathrm{k}}+\mathrm{Ak} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{w})=\mathrm{A}_{\mathrm{n}+1}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{A}_{\mathrm{n}+1}+\mathrm{A}_{2 \mathrm{n}+\mathrm{j}} ; 1 \leq \mathrm{j} \leq \mathrm{m}$
The induced edge labeling f^{*} is obtained as
$\mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{n}+\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{ww}_{\mathrm{j}}\right)=\mathrm{A}_{2 \mathrm{n}+\mathrm{j}} ; 1 \leq \mathrm{j} \leq \mathrm{m}$
Clearly from the definition of f and f^{*}, vertex and edge labels are distinct.
Thus, it is proved that the union of subdivided star graph and star graph, $S\left(K_{1, n}\right) \cup K_{1, \mathrm{~m}}$ admits
ANL for $\mathrm{n}, \mathrm{m}>1$.

Example 2: The union of subdivided star graph and star graph, $\mathrm{S}\left(\mathrm{K}_{1,5}\right) \cup \mathrm{K}_{1,6}$ admits ANL $\mathrm{n}, \mathrm{m}>1$.

Fig 2 Arithmetic number labelling for $\mathrm{S}\left(\mathrm{K}_{1,5}\right) \cup \mathrm{K}_{1,6}$
Thus, it is proved that the union of subdivided star graph and star graph, $S\left(K_{1,5}\right) \cup K_{1,6}$ admits ANL for $\mathrm{n}, \mathrm{m}>1$.

Theorem 3: The union of subdivided star graph and bistar graph $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right) \cup \mathrm{B}_{\mathrm{r}, \mathrm{s}}$ admits ANL for $\mathrm{n}, \mathrm{r}, \mathrm{s}>1$

The function $f: V\left(S\left(K_{1, n}\right) \cup B_{r, s}\right) \longrightarrow\left\{A_{n}\right\}$ is defined as,
$\mathrm{f}(\mathrm{u})=0$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{vk})=\mathrm{A}_{\mathrm{n}+\mathrm{k}}+\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{w})=\mathrm{A}_{\mathrm{n}+1} ; \mathrm{n}>1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{A}_{\mathrm{n}+1}+\mathrm{A}_{2 \mathrm{n}+\mathrm{j}} ; 1 \leq \mathrm{j} \leq \mathrm{r}$
$\mathrm{f}(\mathrm{y})=\mathrm{A}_{\mathrm{n}+1}+\mathrm{A}_{2 \mathrm{n}+\mathrm{r}+1} ; \mathrm{n}, \mathrm{r}>1$
$\mathrm{f}\left(\mathrm{y}_{\mathrm{j}}\right)=\mathrm{A}_{\mathrm{n}+1}+\mathrm{A}_{2 \mathrm{n}+\mathrm{r}+1}+\mathrm{A}_{2 \mathrm{n}+\mathrm{r}+1+\mathrm{j}} ; 1 \leq \mathrm{j} \leq \mathrm{s}$
The induced edge labeling f^{*} is obtained as
$\mathrm{f}^{*}\left(\mathrm{un}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{n}+\mathrm{k}} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{ww}_{\mathrm{j}}\right)=\mathrm{A}_{2 \mathrm{n}+\mathrm{j}} ; 1 \leq \mathrm{i} \leq \mathrm{r}$
$\mathrm{f}^{*}(\mathrm{wy})=\mathrm{A}_{2 \mathrm{n}+\mathrm{r}+1} ; \mathrm{n}, \mathrm{r}>1$
$\mathrm{f}^{*}(\mathrm{yyk})=\mathrm{A}_{2 \mathrm{n}+\mathrm{r}+1+\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{s}$

Clearly from the definition of f and f^{*}, vertex and edge labels are distinct.
Thus, it is proved that the union of subdivided star graph and bistar graph $S\left(K_{1, n}\right) \cup B_{r, s}$ admits ANL for $\mathrm{n}, \mathrm{r}, \mathrm{s}>1$

Example 3: The union of subdivided star graph and bistar graph $S\left(K_{1,4}\right) \cup B_{3,6}$ admits ANL.

Fig 3 Arithmetic number labelling for $\mathrm{S}\left(\mathrm{K}_{1,4}\right) \cup \mathrm{B}_{3,6}$
Thus, it is proved that the union of subdivided star graph and bistar graph $S\left(K_{1,4}\right) \cup B_{3,6}$ admits ANL.

Python program code

Generating the vertex labels for graphs with a greater number of vertices is a difficult task. So, in this session, we have included the Python program code to generate the vertex labels of union of subdivided star graph and bistar graph $S\left(K_{1, n}\right) \cup B_{r, s}$. Screenshot of few examples are also included. The first example has $5,3,2$ as values of n, r and j . The second example has 10,7 and 4 as the values of n, r and j. The third example has 25,15 and 10 as the values of n, r, and j . This Python program code can ease the tedious process of computing the vertex labels of graphs and hence we can generate a Python program code for vertices of any graph.

The following is the Python program coding link.
https://colab.research.google.com/drive/1_MXvDI6b7RK8SHaBq3r_06ytTa3t5A6u?usp=sha ring

Python program code to generate the vertices of union of subdivided star graph and bistar graph $S\left(K_{1, n}\right) \cup B_{r}$, s.

Vertex label for $S(K 1, n) \cup B r, S, f(f y)=A_{n^{1}+1}+A_{22^{2}+1-1}+A_{22^{2}+1+1-1}$

```
def findarithmetic(no):
    count=0
    sum=0
    for i in range(1,no+1):
        if(no%i==0):
        count=count+1
        sum=1+sum;
    avg=int(sum/count)
    avg1=sum/count
    if (avg1-avg==0):
            return(no)
        else:
        return(0)
def findvalue(j):
    limit=2000
    c=0
    ano =0;
    number=[]
    v=[]
    v.append(0)
    v.append(6)
    v.append(5)
    v.append(8)
    size=1000
    for i in range(1,size):
        ans=findarithmetic(i)
        if c<limit and ans >0:
            number.append(ans)
```

```
            c=c+1
    for j1 in range(5,20):
        k=v[j1-2] +number[j1-1]
        #print(v[j-2])
        #print(number[j-1])
        v.append(k)
        return(number[j-1])
```



```
    def subs(n):
    n=str(n)
    for i in n:
        print(sbs[int(i)],end=' ')
    n=int(input("Enter value for n : "))
    r=int(input("Enter value for r : "))
    j=int(input("Enter value for j : "))
    p1=n+1
    p2=(2*n)+r+1
    p3=p2+j
    print("f(y",end=' ')
    subs(j)
    print(")",end=' ')
    print(" = ",end='')
    print("A",end=' ')
    subs(p1)
    print(" + ",end=' ')
print(" + ",end=' ' )
print("A",end= ' ')
subs(p2)
print(" + ",end=' ')
print("A",end=' ')
subs(p3)
a1=findvalue(p1)
a2=findvalue(p2)
a3=findvalue(p3)
print(" = ",end=' ')
print(a1,end=' ')
print(" + ",end=' ')
print(a2,end='')
print(" + ",end=' ')
print(a3,end='')
print(" = ",end=' ')
print(a1+a2+a3)
    print(a1+22+a3)
```

Enter value for n : 5
Enter value for r : 3
Enter value for $j \quad ; 2$
$f\left(y_{2}\right)=A_{6}+A_{14}+A_{16}=11+22+27=60$

```
Emer value for: :10
Emer alure for:%
Emer value for j:4
f(y,4)=A12}+\mp@subsup{A}{12}{}+\mp@subsup{A}{23}{}=1.19+4+4)=11
```

```
Enter value for n : 25
Enter value for \(r\) : 15
Enter value for \(j\) : 10
\(f\left(\mathrm{y}_{10}\right)=\mathrm{A}_{26}+\mathrm{A}_{66}+\mathrm{A}_{76}=42+99+114=255\)
```

Theorem 4: The union of two subdivided star graphs $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right) \cup \mathrm{S}\left(\mathrm{K}_{1, \mathrm{~m}}\right)$ admits ANL for $\mathrm{n}, \mathrm{m}>1$

The function $\mathrm{f}: \mathrm{V}\left(\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right) \cup \mathrm{S}\left(\mathrm{K}_{1, \mathrm{~m}}\right)\right) \longrightarrow\left\{\mathrm{A}_{\mathrm{n}}\right\}$ is defined as
$\mathrm{f}(\mathrm{u})=0$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{n}+\mathrm{k}}+\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{w})=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}\right)-2$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=\mathrm{A}_{2 \mathrm{n}+\mathrm{j}}+\mathrm{f}(\mathrm{w}) ; 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{A}_{2 \mathrm{n}+\mathrm{m}+\mathrm{j}}+\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right) ; 1 \leq \mathrm{j} \leq \mathrm{m}$
The induced edge labeling f^{*} is obtained as
$\mathrm{f}^{*}\left(\mathrm{u} u_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{n}+\mathrm{k}} ; 1 \leq \mathrm{k} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{ww}_{\mathrm{j}}\right)=\mathrm{A}_{2 \mathrm{n}+\mathrm{j}} ; 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}^{*}\left(\mathrm{wx}_{\mathrm{j}}\right)=\mathrm{A}_{2 \mathrm{n}+\mathrm{m}+\mathrm{j}} ; 1 \leq \mathrm{j} \leq \mathrm{m}$
Clearly from the definition of f and f^{*}, vertex and edge labels are distinct.
Thus, it is proved that union of two subdivided star graphs $S\left(\mathrm{~K}_{1, \mathrm{n}}\right) \cup \mathrm{S}\left(\mathrm{K}_{1, \mathrm{~m}}\right)$ admits ANL.

Example 4: The union of two subdivided star graphs $\mathrm{S}\left(\mathrm{K}_{1,5}\right) \cup \mathrm{S}\left(\mathrm{K}_{1,3}\right)$ admits ANL.

Fig 4 Arithmetic number labelling for $S\left(K_{1,5}\right) \cup S\left(K_{1,3}\right)$

Thus, it is proved that the union of two subdivided star graphs $S\left(\mathrm{~K}_{1,5}\right) \cup \mathrm{S}\left(\mathrm{K}_{1,3}\right)$ admits ANL.

Conclusion:

Arithmetic number labelling for subdivision graph and union graphs are studied in this paper. Arithmetic number labelling of subdivided star graph $\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ and union of two subdivided star graphs $S\left(K_{1, n}\right) \cup S\left(K_{1, m}\right)$, union of subdivided star graph with star graph $S\left(K_{1, n}\right) \cup K_{1, m}$, union of subdivided star graph with bistar graph $S(K, n) \cup B r$, s are studied. Also, Python program code to generate the vertex labels of the union of subdivided star graph and bistar graph represented by $S(K, n) \cup B r$, s is given. Appropriate examples are given. There is further scope of establishing arithmetic number labelling for more graphs with application to heterogenous fields.

References:

[1] A. Rosa, "Cyclic Steiner triple systems and labellings of triangular cacti", scientia,I (1988) 87-95.
[2] Ahmad, Ali, Muhammad Kamran Siddiqui, Muhammad Faisal Nadeem, and Muhammad Imran. "On super edge magic deficiency of kite graphs." Ars Comb. 107 (2012): 201-208.
[3] Dehmer, M., Emmert-Streib, F., \& Shi, Y. (2017). Quantitative graph theory: a new branch of graph theory and network science. Information Sciences, 418, 575-580.
[4]Esakkiammal, E., Deepa, B., \& Thirusangu, K. (2018). Some labelings on square graph of comb. International Journal of Mathematics Trends nd Technology, 2231-5373.
[5] Peng, B., Zhang, L., \& Zhang, D. (2013). A survey of graph theoretical approaches to image segmentation. Pattern recognition, 46(3), 1020-1038.
[6] Mondal, B \& De, K. (2017). "An overview applications of graph theory in real field". International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2(5), 751-759.
[7]Muthumanickavel, G., \& Murugan, K. (2020). Oblong Sum Labeling of Union of Some Graphs. World Scientific News, 145, 85-94.
[8] Prasanna, N. L, Sravanthi, K \& Sudhakar, N. (2014). "Applications of graph labeling in communication networks". Oriental Journal of Computer Science and Technology, 7(1), 139145.
[9] Sleurink, J. K. (2021). "A study on constellations using random graphs" (Bachelor's thesis, University of Twente).
[10] Uma Maheswari. A \& Purnalakshimi. A. S, (2022a) "AUM block labelling for snake graphs and dutch windmill graph", Neuro Quantology, Aug 2022, Volume 20, Issue 9, Pp 414-421.
[11] Uma Maheswari. A \& Purnalakshimi. A. S, (2022a) "AUM block labelling for friendship, tadpole and cactus graphs'"(2022), Neuro Quantology, June 2022,Volume 20,Issue 6,Pp78767884.
[12] Uma Maheswari. A \& A.S.Purnalakshimi (2022b), "Arithmetic number labelling of graphs" in Advances in graph labelling, coloring and power domination theory -Volume 1.
[13] Uma Maheswari. A \& Azhagarasi, S, "New Labeling for Graphs-AUM Block Sum Labeling", International Journal of Current Science, Vol.12, No.1, pp.574-584.
[14] Uma Maheswari.A \& Azhagarasi, S. (2022b). "AUM Block Labelling for Cycle Cactus Block Graphs", Compliance Engineering Journal, Vol.13, No.4, pp.84-96.
[15] Uma Maheswari. A and Srividya.V, "Some labellings on cycles with parallel P_{3} chords", Journal of applied science and computations, Vol -VI, Issue 1, Jan 2019a, Pg 469-475.
[16] Uma Maheswari. A and Srividya.V, "t odd sequential harmonious labelling of cycle C_{3} with parallel chords". International Journal of Engineering and advanced Technology, Volume: 8(5), Pp 2184-2188,2019b.
[17] Uma Maheswari. A and Srividya.V, "Vertex Even Mean labelling of New families of graphs", International journal of scientific research and reviews,2019 c: 8(2): 902-913.
[18] Uma Maheswari. A and Srividya.V, "Vertex Odd mean labelling of Some Cycles with parallel chords", American International Journal of Research, Technology, Engineering \& Mathematics,2019d,73-79
[19] Uma Maheswari. A and Srividya.V, "New labellings on cycle with parallel P_{3} chords",Journal of Emerging Technologies and Innovative Research (JETIR),May 2019 e,Vol 6 ,Issue -5,Pp:559-564.
[20] Uma Mahewari . A, Azhagarasi.S \& Bala Samuvel.J, "Some New labelling on cycle Cn with zigzag chords chords", International journal of Mechanical Engineering, Kalahari Journals, (scopus) Vol 6, No 3 December 2021, ISSN 0974-5823 Pg: 1616-1623.
[21] Uma Mahewari. A, Azhagarasi.S \& Bala Samuvel.J, "Vertex Even Mean and Vertex Odd Mean Labelling for Path Union and crown on cycle with parallel P_{3} chords", Design engineering (Toronto) (2021), Issue 6 Pages 5775-5792, ISS:0011-9342.
[22] Uma Maheswari. A \& Purnalakshimi. A. S, "Graph Theory in the Analysis of Arithmophobia" International journal of Innovative Technology and Exploring Engineering, ISSN:2278-3075, Vol-X, Issue -X, July 2019.
[23] Uma Maheswari. A \& Purnalakshimi. A. S, "AUM Block labelling for star, bistar and sunlet graph" Neuro Quantology, Volume 20,Issue 10.
[24] Uma Maheswari.A \& Azhagarasi .S "AUM Block sum labelling for some special graphs", International journal of Mechanical Engineering, Vol 7 Special Issue 5,2022 ISSN 0974-5823.
[25]Yu, Q., Du, Y., Chen, J., Sui, J., Adalē, T., Pearlson, G. D., \& Calhoun, V. D. (2018). Application of graph theory to assess static and dynamic brain connectivity: Approaches for building brain graphs. Proceedings of the IEEE, 106(5), 886-906.

