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Abstract:  
The fractional of Cauchy-type problem (FCT) is solved precisely in the current study utilizing 
the Laplace residual power series approach (LRPS). The Caputo operator is used to determine 
the fractional derivative. Firstly, we present a brand-new technique that combines the residual 
power series strategy with the Laplace transform technique. We provide precise instructions 
for employing the suggested methodology to calculate fractional Cauchy-type formula. Next, 
we assess the technique's effectiveness and accuracy using the FCT. The calculated and actual 
results are examined using graphic representations of the results, demonstrating how much 
more accurate the proposed approach is. The table illustrates the findings for fractional 
approximations results for different fractional orders in addition to nonfractional 
approximations and correct results. It is shown that like the number of phrases inside the serial 
that solve the issues rises, the relation between the generated answers as well as the real 
solutions to every issue converges. To exemplify that how proposed scheme works in 
calculating various types of fractional ordinary differential equations, two instances are 
provided. 
Keywords: Fractional power series, Fractional Cauchy-type formula, Series of Laplace 
residual power, Laurent's series.  
 
Introduction 
Fractional derivatives (FD), which generalize integer derivatives and shift the rank of 
derivatives from integer to real or indeed complexes, are useful in helping explain a variety of 
phenomena. Numerous applications in a range of scientific domains have led to the 
development of a distinctive mathematical strategy for solving problems known as fractional 
calculus (FC) [1,2,3]. FC is effectively used in many areas, like biology, processing of images 
and signals, finance, and physics. The origin of FC is briefly addressed in every one of the 
numerous publications on the subject which have recently come out [4,5,6,7]. The core subjects 
of FC include consistent non - linear model, abnormal dispersion, controlling, and vibrations 
[8]. According to Podliubny [6], having reviewed several implementations that have evolved 
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from numerical techniques of viscoelasticity, it comes so easily to apply fractional calculus. It 
was possible to consider many fractional derivative types, including Caputo, Hadamard, 
Grünwald-Letnikov and Riemann-Liouville. Diverse approaches have been put forth to 
describe fractional differential equations, including technique of  Yang transform 
decomposition [9,10], technique of  auxiliary formula [11], technique of  fractional variational 
iteration [12,13], technique of  collocation [14], technique of  trapezoidal [15], technique of  
homotopy analysis [16], technique of  Elzaki transform decomposition [17,18], technique of  
homotopy perturbation transform [19,20] and numerous others [21,22,23,24]. 
In order to calculate the parameters for the power series solutions for the fractions and non-
fractional DEs, it is possible to use the RPS [25], [26], [27], [28], [29], [30]. It relies on building 
power series answers to a variety of nonlinear and linear problems and offers the answer in the 
form of a convergent series not linearization, and disruption, or separation. The fractional 
KDV-Burgers formula, fractional Schrödinger formulas, fractional multi-pantograph structure, 
and several other kinds of a fraction ordinary DEs, a fraction partial DEs, all have been resolved 
effectively by the RPS technique. Because it is outdated, certain types of DEs are still solved 
using the Laplace transform technique. 
An ordinary differential equation in second rank describes the Cauchy-type formula [31]. At 
the same time, we provide this as 

                                           𝐷 𝑢(𝜂) − 𝜉𝑢(𝜂) = z(𝜂),   𝜂 > 0,0 < 𝛼 ≤ 1,                                                 

(1) 
And initial condition as: 
 

𝐷 − + 
𝛼 − 𝑚||*𝑢(𝜂) = 𝜆 , 𝑚 = 1,2, . . . , 𝑛 
here z(𝜂) is a predetermined function. 

This manuscript's primary goal is to examine analytical and approximative answers to Cauchy-
type problems using the Laplace residual power series (LRPS) method, which was suggested 
and demonstrated in [36]. The LRPS approach combines the Laplace transform approach and 
the RPS approach, providing both precise and approximative results as quickly as fractional 
power series (FPS) answers as a consequence of transforming the main issue to Laplace space 
and developing answers to novel algebraic problems. The main issue is then resolved by 
applying the Laplace inverse of the outcomes. In contrast to the FRPS method, that relies on 
the fractional derivative and can require longer to compute the various fractional derivatives in 
stages in order to identify the results, the unidentified parameters in the novel Laplace 
expansions may be identified by employing the limit idea. The LRPS method has fewer time- 
and accuracy-intensive minor computing demands.  

   The significance of this study is in compared the correct result of non-FCT to fifth-rank 
approximations for a variety of fractional derivative values with the exact result of an FCT 
utilizing a comparable new approach. This work may serve as the primary guide by researchers 
to determine this approach and apply it in a variety of contexts to obtain precise and 
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approximate findings in some few simple steps. Our study's application of LRPSM for FCT in 
simple, straightforward procedures is one of its distinctive features. We give clear foundations 
and features of fractional derivatives in Part 2. The recommended strategy is presented in Part 
3, and two FCT situations are accurately solved in Part 4. 

Preliminaries 

In this part, we also cover the Laplace transform results and the fundamental idea of 
fractional calculus: 

Definition 1 [32]. The fractional derivative is the same in the Caputo as: 

                                                                      𝐷 𝑤(𝜂) = J 𝑤 (𝜂),  𝛿 − 1 < 𝛼 ≤ 𝛿                                                 
(2) 

where the Riemann-Liouville (RL) integral operators is represented by J  as 

                      *                              J 𝑤(𝜂) =
( )

∫   (𝜅 − 𝑡) 𝑤(𝑡)𝑑𝑡                                           

(3) 
and  𝛿 ∈ ℕ 

Definition 2. [33] The Laplace transform (𝐿𝑇) defined on function 𝑤(𝜂) is 

                                                              ℒ{𝑤(𝜂)} = ∫   𝑒 𝑤(𝜂)𝑑𝜂,  𝑠 > 𝛼                                                      

(4) 
making use of inverse LT as follows:  

                                                        ℒ {𝑊(𝑠)} = ∫   𝑒 𝑊(𝑠)𝑑𝑠,  𝑐 = 𝑅𝑒(s) > 𝑐                                      

(5) 

Lemma 3.  [34] If we assume that 𝑤(𝜂)  is a piece - wise continuous function with 𝑊(𝑠) =

ℒ{𝑤(𝜂)} the below characteristics are genuine: 

(i) ℒ{J∗ 𝑤(𝜂)} =
( )

,  𝜚 > 0 

(ii) ℒ{D∗ 𝑤(𝜂)} = 𝑠 𝑊(𝑠) − ∑  𝑠 𝑤 (0),  𝑘 − 1 < 𝛼 ≤ 𝑘; 

(iii) ℒ{D∗ 𝑤(𝜂)} = 𝑠 𝑊(𝑠) − ∑  𝑠( ) D∗ 𝑤(0),  0 < 𝛼 ≤ 1. 

Proposition 4. [33] Take into account that 𝑤(𝜂) is a piecewise continuous on [0, ∞) with an 
exponential order of ℑ. Consider that the fractional expansions of  𝑊(𝑠) = ℒ{𝑤(𝜂)}  will be 
as follows: 

                                                                 𝑊(𝑠) = ∑   ,  0 < 𝛼 ≤ 1, 𝑠 > ℑ                                            

(6) 

Hence, 𝜆 = D∗ 𝑤(0).  
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Remark 5.[33] Using inverse LT to the provided (6), we get: 

                                                                         𝑤(η) = ∑  
𝐃∗

𝜶 ( )

( )
𝜂 ,  0 < 𝛼 ≤ 1, 𝜂 ≥ 0                            

(7)        
It is comparable to the fractional Taylor's equation presented in [33]. 

Definition 6. [35] An expanding that represents the below: 

                                            ∑ 𝜆 (𝑡 − 𝑡 ) = ∑
( )

+ ∑ 𝜆 (𝜂 − 𝜂 ) ,                                 

(8)        
is referred to as a (LS) at (LS), where 𝜂 is a parameter and 𝜆 's are constant known as series' 
factors. The analytical or regular section of Laurent's series seems to be the series 
∑ 𝜆 (𝜂 − 𝜂 ) . Although the single or main section of Laurent's series is defined by 

∑
( )

. 

 

The Cauchy-Type Equations Solutions Using LRPS Technique 

Take the following fractional Cauchy-Type differential to demonstrate how the LRPS 
technique may be used to create a series solution to the FODEs: 

                                                       𝐷 𝑢(𝜂) − 𝜉𝑢(𝜂) = z(𝜂),   𝜂 > 0, 0 < 𝛼 ≤ 1,                                                    

(9) 
And initial condition as: 

                                                                             𝐷 𝑢(𝜂) = 𝜆 , 𝑚 = 1,2, . . . , 𝑛                                         

(10) 
In the beginning, use the LT to (9), we obtain: 

                                                                                ℒ 𝐷 𝑢(𝜂) − 𝜉𝑢(𝜂) = ℒ[z(𝜂)],   𝜂 ∈  𝐼.                                      

(11) 
with 𝐼 is an open interval and z(𝑡) is an analytical function. 
We may construct (11) as following using Lemma 3: 
                                                                        𝑠 𝑈(𝑠) − 𝑠  𝑢(0) − 𝜉𝑈(𝑠) = 𝑍(𝑠), 𝑠 > 0.                                  
(12) 
where 𝑈(𝑠) = ℒ[𝑢(𝜂)] and 𝑍(𝑠) = ℒ[𝑧(𝜂)].  
 
The next form of Eq. (12) is produced by dividing it by 𝑠  and applying the beginning 
circumstances from Eq. (12): 

                                                              𝑈(𝑠) = + 𝑈(𝑠) +
( )

, 𝑠 > 0.                                                                     

(13) 
Consider that extension of Eq. (13) result is as follows: 
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                                                                         𝑼(𝒔) =
𝝀𝒋

𝒔𝟏 𝜶𝒋
𝒋 𝟎

 , 𝒔 > 𝟎.                                                             

(14)  

According to (14), the kth-truncated series is 

                                                                            𝑈 (𝑠) = +  , 𝑠 > 0.                                                   

(15) 
We can define the main LRPS techniques like the LRF of Eq. (13), in order to determine the 
unknown value of the parameter, 𝜆  that is presented as:                                   

                                             LRes(s) = U(𝑠) − − 𝑈(𝑠) −
( )

, 𝑠 > 0.                                                             

(16) 
thus, the kth-LRF defined as: 

                                                   LRes (s) = U (𝑠) − − U (𝑠) −
( )

, 𝑠 > 0.                                                      

(17) 
It is obvious that for 𝑠 > 0 and 𝑘 = 0,1,2,3, …. Lim → LRes (𝑠) = LRes(𝑠), LRes(𝑠) = 0. 

As a result, Lim → 𝑠 LRes(𝑠) = 0.  Additionally, it was established [36, 37] and 

                             Lim → 𝑠 LRes(𝑠) = Lim → 𝑠 LRes (𝑠) = 0, 𝑘 = 1,2,3, ..                                     

(18) 

Given that U (𝑠) = +
𝝀𝟏

𝒔𝟏 𝜶  , Eq. (17) signify: 

                                                 LRes (s) =
𝝀𝟏

𝒔𝟏 𝜶 −
𝝀𝟎 −

𝝀𝟏

𝒔𝟏 𝟐𝜶 −
( )

, 𝑠 > 0.                                                         

(19) 

Next, multiplying 𝒔𝟏 𝜶 by two parts of equation (19) yields 

                                         𝒔𝟏 𝜶LRes (s) = 𝝀𝟏 − 𝜉𝝀𝟎 −
𝝀𝟏

𝒔𝜶 − 𝑠𝑍(𝑠), 𝑠 > 0.                                                            

(20) 
Next, utilizing the assumption in Eq. (18) and the limit as 𝑠 → ∞ from both parts of Eq. (20), 
we may quickly ascertain the value of 𝜆  via resolving the formula given of 𝜆 : 
                                                  0 = 𝜆 − 𝜉𝜆 − Lim → 𝑠𝑍(𝑠) 
                                                     = 𝜆 − 𝜉𝜆 − 𝑧(0), 𝑠 > 0.                                                                                              
(21) 
It is simple to get the following by calculating 𝜆  in the ensuing algebraic formula (21). 
                                                                       𝜆 = 𝜉𝜆 + 𝑧(0), 𝑠 > 0.                                                                                
(22) 

The 2nd-truncated series of Eq. (17), U (𝑠) = + + , is substituted into in the 2nd -

LRF to calculate the value of the next undetermined parameter 𝜆  as follows: 



Journal of Northeastern University 
Volume 26 Issue 02, 2023 

Copyright © 2023. Journal of Northeastern University. Licensed under the Creative Commons Attribution Non-
commercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/ 

106 

                                                                                 

                                                                 
 

                                                          LRes (s) = − − −
( )

, 𝑠 > 0.                                                   

(23) 
Next, multiplying 𝑠  by two parts of equation (23) yields 

                                            𝑠 LRes (s) = 𝜆 − 𝜉𝜆 − − 𝑠 𝑍(𝑠), 𝑠 > 0.                                                 

(24) 
To get the below formula, calculate the limit as 𝑠 → ∞ with both parts of Eq. (24) and then 
employ Eq. (18). 
                                                   0 = 𝜆 − 𝜉𝜆 − Lim → 𝑠 𝑍(𝑠) 

                                                      = 𝜆 − 𝜉𝜆 − 𝐷 𝑧(0) , 𝑠 > 0.                                                                           

(25) 
By resolving the algebraic equation that results for 𝜆 , we obtain 

                                                   𝜆 = 𝜉𝜆 + 𝐷 𝑧(0) , 𝑠 > 0.                                                                                           

(26) 

Similar to a previous stages, replace the 3rd -truncated series of Eq. (17), U (𝑠) = +
𝝀𝟏

𝒔𝟏 𝜶 +

𝝀𝟐

𝒔𝟏 𝟐𝜶 +
𝝀𝟑

𝒔𝟏 𝟑𝜶 is substituted into in the 3rd -LRF to calculate the value of the next undetermined 

parameter 𝝀𝟑 as follows: 

                                                         LRes (s) =
𝝀𝟑

𝒔𝟏 𝟑𝜶 −
𝝀𝟐 −

𝝀𝟑

𝒔𝟏 𝟒𝜶 −
( )

, 𝑠 > 0.                                                    

(27) 

multiplying 𝒔𝟏 𝟑𝜶 by two parts of equation (27) yields 

                                           𝑠 LRes (s) = 𝜆 − 𝜉𝜆 − − 𝑠 𝑍(𝑠), 𝑠 > 0.                                                      

(28) 
To get the below formula, calculate the limit as 𝑠 → ∞ with both parts of Eq. (28) and then 
employ Eq. (18). 
Using the fact (18) and the limit as 𝑠 → ∞ both for parts of Eq. (28), we arrive as: 
                                                   0 = 𝜆 − 𝜉𝜆 − Lim → 𝑠 𝑍(𝑠) 

                                                      = 𝜆 − 𝜉𝜆 − 𝐷 𝑧(0) , 𝑠 > 0.                                                                                  

(29) 
For 𝜆 , resolving equation (29) yields 

                                                                  𝜆 = 𝜉𝜆 + 𝐷 𝑧(0) , 𝑠 > 0.                                                                          

(30) 
We can readily determine the factor 𝜆  by looking at the pattern of the derived factors, which 
is as continues to follow: 

                                           𝜆 = 𝜉𝜆 + 𝐷
( )

𝑧(0) , 𝑠 > 0, 𝑘 = 1,2, . . ..                                                                

(31) 
As a result, we may write the Eq. (15) result's in an infinite series like described in the 
following: 
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                                                            𝑈(𝑠) = + ∑
𝝀𝒋

𝒔𝟏 𝜶𝒋 + 𝐷
( )

𝑧(0)𝒋 𝟏 .                                                            

(32) 
The LRPS solution to Equations (9) and (10) is obtained by using the inverse LT of Equation 
(32) in the given simple format: 

                                               𝑢(𝜂) = 𝜆 + ∑
𝝀𝒋

𝒔𝟏 𝜶𝒋 + 𝐷
( )

𝑧(0)𝒋 𝟏  
( )

.                                                          

(33) 
 
 
Results and discussion 
  In this part, we look at the importance of the LRPSM in obtaining the solution to the CT. 
  Problem 1: Take into account the fractional equation below: 
                                                         𝐷 𝑢(𝜂) − 5𝑢(𝜂) = 0 ,     𝜂 > 0, 0 < 𝛼 ≤ 1,                                                            

(34) 
  And initial condition as: 

                                                                     𝑢(0) = 1                                                                                                       
(35) 
  Using (35), the LT is taken to (34) which gives us 

                                                                 𝑈(𝑠) = + 𝑈(𝑠), 𝑠 > 0.                                                                                

(36) 
  It is claimed that the kth-truncated series is 

                                           𝑈 (𝑠) = +  , 𝑠 > 0.                                                                       

(37) 
  Consequently, the kth LRFs are 

                                                LRes (s) = U (𝑠) − − U (𝑠), 𝑠 > 0.                                                                  

(38) 
The kth-truncated series (37) is now placed into the kth LRF (38) to give 𝜆 . After multiplying 

the resultant formula by 𝑠 , we may calculate the relationship. 

Lim → 𝑠 LRes (𝑠) = 0, 𝑘 = 1,2,3, .. 

So, several values include: 
𝜆 = 1, 
𝜆 = 1, 
𝜆 = 1, 
𝜆 = 1, 
𝜆 = 1, 

And so on.  
We next obtain the values of 𝜆  via entering them in (37), where 𝑗 = 1,2,3, . .. 
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                                              𝑈(𝑠) = +
𝒔𝟏 𝜶

+
𝒔𝟏 𝟐𝜶

+
𝒔𝟏 𝟑𝜶

+
𝒔𝟏 𝟒𝜶

+. ..                                                         

(39) 
If we calculate LT's inverse, we obtain 

                            𝑢(𝜂) = 1 +
( )

+
( )

+
( )

+
( )

+
( )

+. ..                                                      

(40) 

If 𝛼 = 1, then Eq. (40) become as follows:  

                                                            𝑢(𝜂) = 1 + 𝜂 + + + + +. ..                                                                

(41) 
The exact solution of Eqs. (34), (35) is: 
                                                                                 𝑢(𝜂) = 𝑒                                                                                                
(42) 
 
The graphs of a 5th approximation and exact result to Eqs. (34) and (35) in the range [0,5] is 
shown in Figure 4.1. The graphic shows that there is a large area in which the approximation 
result and the exact result match. 
The absolute error, together with the accurate and approximation findings at various values of 
t inside the interval [0,1], are provided in Table 4.1a and b because the exact result of the Eqs. 
(34) and (35) are known to exist. According to the outcomes, the LRPS approach is a reliable 
analytical numerical technique for providing exact results to the FODEs. 

 

                                                                      (a)                                                                       (b)   
 
Figure 1. The actual result of Eq. (34), (35) and the 5th approximation of the LRPS solution. 
The full curve shows 
the exact result, while the dotted curve the approximation LRPS result at (a)  𝛼 = 1 , (b)  𝛼 =

0.90. 

Table 1.a The actual error and the 5th approximative LRPS result for Eqs. (34), (35) at 𝛼 = 1 
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𝜼 𝒖𝟓(𝜼) −Approximation 𝒖(𝜼)- Exact 𝑨𝒄𝒕. 𝑬𝒓𝒓. (𝜼) 

0.0 1 1 0 

0.1  1.10517           1.10517 8.47423 × 10  

0.2 1.2214 1.2214 2.75816 × 10  

0.3 1.34984 1.34986 2.13076 × 10  

0.4 1.49173 1.49182 9.13643 × 10  

0.5 1.64844 1.64872 2.83771 × 10  

0.6 1.8214 1.82212 7.188 × 10  

0.7 2.01217 2.01375 1.58187 × 10  

0.8 2.2224 2.22554 3.14093 × 10  

0.9 2.45384 2.4596 5.76561 × 10  

 

Table 1.b The actual error and the 5th approximative LRPS result for Eqs. (34), (35) at 𝛼 =

0.90 

𝜼 𝒖𝟓(𝜼) −Approximation 𝒖(𝜼)- Exact 𝑨𝒄𝒕. 𝑬𝒓𝒓. (𝜼) 

0.0 1 1 0 

0.1  1.14085           1.10517 35.6772 × 10  

0.2 1.28052 1.2214 59.116 × 10  

0.3 1.43041 1.34986 80.5462 × 10  

0.4 1.5934 1.49182 10.1579 × 10  

0.5 1.77155 1.64872 12.2826 × 10  

0.6 1.96663 1.82212 14.4511 × 10  

0.7 2.18037 2.01375 16.6616 × 10  

0.8 2.41448 2.22554 18.8935 × 10  

0.9 2.67068 2.4596 21.1076 × 10  

 
Problem 4.2: Take into account the fractional equation below: 
                                                         𝐷 𝑢(𝜂) − 𝑢(𝜂) = 𝑒  ,     𝜂 > 0, 0 < 𝛼 ≤ 1,                                                    

(43) 
  And initial condition as: 
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                                                                               𝑢(0) = 0                                                                                     
(44) 
  Using (44), the LT is taken to (43) which gives us 

                                                                         𝑈(𝑠) = 𝑈(𝑠) + , 𝑠 > 0.                                                                     

(45) 
  It is claimed that the kth-truncated series is 

                                                   𝑈 (𝑠) =  , 𝑠 > 0.                                                                                     

(46) 
  Consequently, the kth LRFs are 

                                                             LRes (s) = U (𝑠) − U (𝑠) + , 𝑠 > 0.                                                        

(47) 
The kth-truncated series (46) is now placed into the kth LRF (47) to give 𝝀𝒋. After multiplying 

the resultant formula by 𝒔𝟏 𝜶𝒋, we may calculate the relationship. 

Lim → 𝑠 LRes (𝑠) = 0, 𝑘 = 1,2,3, .. 

So, several values include: 
𝜆 = −𝑒 , 
𝜆 = 2𝑒 , 
𝜆 = 3𝑒 , 
𝜆 = 4𝑒 , 
𝜆 = 5𝑒 , 

And so on. 
We next obtain the values of 𝝀𝒋 via entering them in (46), where 𝑗 = 1,2,3, . .. 

                                                       𝑈(𝑠) =
𝒔𝟏 𝜶 +

𝒔𝟏 𝟐𝜶 +
𝒔𝟏 𝟑𝜶 +

𝒔𝟏 𝟒𝜶 +
𝒔𝟏 𝟓𝜶 +. ..                                                     

(48) 
If we calculate LT's inverse, we obtain 

                                               𝑢(𝜂) = −
( )

+
( )

+
( )

+
( )

+
( )

+. ..                                      

(49) 

If 𝛼 = 1, then Eq. (49) become as follows:  

                                           𝑢(𝜂) = −𝑒 η + + + + +. ..                                                     

(50) 
The exact solution of Eqs. (43), (44) is: 
                                                                                   𝑢(𝜂) = −𝜂𝑒                                                                                      
(51) 
The graphs of a 5th approximation and exact result to Eqs. (43) and (44) in the range [0,5] is 
shown in Figure 4.2. The graphic shows that there is a large area in which the approximation 
result and the exact result match. 
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The absolute error, together with the accurate and approximation findings at various values of 
t inside the interval [0,1], are provided in Table 4.1 a and b because the exact result of the Eqs. 
(43) and (44) are known to exist. According to the outcomes, the LRPS approach is a reliable 
analytical numerical technique for providing exact results to the FODEs. 
 

 

                                                                (a)                                                                          (b)   

 
 Figure 2. The actual result of Eq. (43), (44) and the 5th approximation of the LRPS solution. 
The full curve 
                   shows the exact result, while the dotted curve the approximation LRPS result at (a)  
𝛼 = 1 , (b)  𝛼 = 0.90. 

 

Table 2.a The actual error and the 5th approximative LRPS result for Eqs. (43), (44) at 𝛼 = 1 

 𝜂      𝑢 (𝜂)      𝑢(𝜂)      𝐴𝑐𝑡. 𝐸𝑟𝑟. (𝜂)      

 0.0  0  0  0  
 0.1       −0.010202               

 −0.010202 
     9.36547 × 10       

 0.2      −0.298364      −0.298365      6.73765 × 10       
 0.3      −0.546627      −0.546636      8.62867 × 10       
 0.4      −0.890162      -0.890216      5.45198 × 10       
 0.5      −1.35891      −1.35914      2.33929 × 10       
 0.6      −1.99128      −1.99207      7.85844 × 10       
 0.7      −2.83641      −2.83864      2.22985 × 10       
 0.8      −3.95683      −3.96243      5.59221 × 10       
 0.9      −5.43192      −5.44468      12.763 × 10       
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Table 2.b The actual error and the 5th approximative LRPS result for Eqs. (43), (44) at 𝛼 =

0.90 

 𝜂      𝑢 (𝜂)      𝑢(𝜂)      𝐴𝑐𝑡. 𝐸𝑟𝑟. (𝜂)      

 0.0  1  1  0  
 0.1       1.14085                1.10517      35.6586 × 10       
 0.2      1.28052      1.2214      64.5542 × 10       
 0.3      1.43041      1.34986      94.0477 × 10       
 0.4      1.5934      1.49182      12.3505 × 10       
 0.5      1.77155      1.64872      15.0419 × 10       
 0.6      1.96663      1.82212      17.0303 × 10       
 0.7      2.18037      2.01375      17.603 × 10       
 0.8      2.41448      2.22554      15.6807 × 10       
 0.9      2.67068      2.4596      9.67511 × 10       

 

Conclusion 

This work presents a novel approach using the Laplace transform and residual power series 
to address numerous important linear fractional Cauchy-Type problems. The benefit of the new 
approach is that it involves less calculation to arrive at the answer in series arrangement, where 
parameters are determined through a sequence of algebraic procedures. The proposed scheme 
was used to answer two different prototype, and tables and graphs demonstrated its accuracy. 
Lastly, we showed that fractional problems may be handled with great precision and 
straightforward computations using the Laplace residual power series technique. The acquired 
findings have been displayed in tables and figures. We found that the exact and analytical 
solutions are strongly related to from the graphs and tables. The tables and graphs helped us to 
understand how nearly the accurate and analytical results are linked to each other. Smaller 
computations made with the current technique have higher precision and may be applied in a 
later review to extend the LRPS techniques to bidimensional practical situations. The 
recommended method can also be used to examine a variety of fractional issues connected to 
the transmission of linear events in physics research. 
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