ON CERTAIN TYPES OF GROUPOIDS AND TOPOLOGICAL GROUPOID

A. Seemaa Ali 1, B. Taghreed Majeed ${ }^{2}$
${ }^{1}$ Mathematics Department- College of Education, Mustansiriyah University.
${ }^{2}$ Mathematics Department- College of Education, Mustansiriyah University.
${ }^{1 *}$ Corresponding author:seemaamohammed2@gmail.com
${ }^{2}$ E-mail addresses:taghreedmajeed@uomustansiriyah.edu.iq

Abstract

: In this work, we introduce new kinds of topological groupoid which are source proper groupoid , submersive groupoid, and use them to construct a new kind of groupoid space which are source proper group space and submersive group space. The main objective of this paper is to find new relationships between these types written as proposition and can be usedin the field of algebraic topology.

Keywords: groupoid, topological space, topological groupoid, source proper groupoid.

1. Introduction:

The main objective of this research is to study certain types of topological groupoid, which is source proper groupoid, denoted by (SC-groupoid), submersive groupoid,denoted by (SSC-groupoid),source proper group-space, denoted by (SC \mathcal{T}-space) and submersive group-space denoted by (SSC \mathcal{T}-space)and also some properties of these groupoids are studied. The category C contain for:(i) The class for objects. (ii) If $\mathfrak{r} \in$ morphism (S, L) with domain S and range L, we write $\mathfrak{r}: S \rightarrow L$ for all arranged pair of things S and L. (iii) A function that associates two morphisms $\mathrm{r}: S \rightarrow L$ and $\mathrm{r}_{1}: L \rightarrow H$ their composite \mathfrak{r}_{1} or : $S \rightarrow H$ for all ordered triple of objects S, L, and H. This satisfies the following axioms:(1) The associative axiom: let $\mathfrak{r}: S \rightarrow L, \mathfrak{r}_{1}: L \rightarrow H, \mathfrak{r}_{2}: H \rightarrow K$ then $\mathfrak{r}_{2}\left(\mathfrak{r}_{1} \mathfrak{r}\right)=\left(\mathfrak{r}_{2} \mathfrak{r}_{1}\right) \mathfrak{r}$.(2) the identity axiom of all objects L there is the morphism $I_{L}: L \rightarrow L$ where let $\mathfrak{r}: S \rightarrow L$, implies $I_{L} \mathfrak{r}=\mathfrak{r}$, and if $\mathfrak{r}_{1}: L \rightarrow H$, then $\mathfrak{r}_{1} I_{L}=\mathfrak{r}_{1}$ [5]. The category of continuous maps and topological spaces that is denoted by $\mathbf{T}[3]$.A groupoid be the pair of sets (N, M) where be get: (1) onto functions $\alpha: N \rightarrow M, \beta: N \rightarrow M$ they are called respectively, a source function, a target function . (2) one-to-one function $w: M \rightarrow$ N known as the object inclusion with $\alpha o w=I_{M}, \beta o w=I_{M}$ where $I_{M}: M \rightarrow M$.(3) A partial composition λ in N. A compositional rule for the set $N * N$ is defined as $N * N=\left\{\left(n_{1}, n_{2}\right) \in N \times\right.$ $\left.N \mid \alpha \quad\left(n_{1}\right)=\beta\left(n_{2}\right)\right\}$ "fiber product of β and α over $M^{\prime \prime}$ s.t :(i) $\lambda\left(n, \lambda\left(n_{1}, n_{2}\right)\right)=$ $\lambda\left(\lambda\left(n_{1}, n_{2}\right), n_{2}\right), \forall\left(n, n_{1}\right),\left(n_{1}, n_{2}\right) \in N * N$.(ii) $\alpha\left(\lambda\left(n_{1}, n_{2}\right)\right)=\alpha\left(n_{2}\right), \beta\left(\lambda\left(n_{1}, n_{2}\right)\right)=\beta\left(n_{1}\right)$ for each $\left(n_{1}, n_{2}\right) \in N * N$.
(iii) $\lambda\left(n_{1}, w\left(\alpha\left(n_{1}\right)\right)\right)=n_{1}$ and $\lambda\left(w\left(\beta\left(n_{1}\right)\right), n_{1}\right)=n_{1}$, for all $n_{1} \in N$. (4) A bijection $\delta: N \rightarrow N$ known as the inversion of N satisfying: (a) $\left.\alpha\left(\delta\left(n_{1}\right)\right)=\beta\left(n_{1}\right), \beta\left(\delta\left(n_{1}\right)\right)=\alpha\left(n_{1}\right)\right)$, for all $n_{1} \in$ $N .(\mathrm{b}) \lambda\left(\delta\left(n_{1}\right), n_{1}\right)=\psi\left(\alpha\left(n_{1}\right)\right), \lambda\left(n_{1}, \delta\left(n_{1}\right)\right)=\omega\left(\beta\left(n_{1}\right)\right)$, for all $n_{1} \in N$. We they note $\delta\left(n_{1}\right)=\left(n_{1}\right)$ ${ }^{1}$, known an inverse for element $n_{1} \in N, w(x)=x$ known a unit for element on N associated into an element $x \in M$. We will take notes $\left(n_{1}, n_{2}\right)=n_{1} n_{2}$. We say that N is a groupoid on M or N is known a groupoid M be known of base.

We call say this is N be the groupoid in M [7].see[8] For every $\mathrm{s} \in \mathrm{S}, \prod_{s \in S} x s \xrightarrow{P_{s}} x s$ such that $P s(x)=x s$, for ever $s \in \prod_{s \in S} x s$, Ps is called the projection map[7]. The morphism for groupoids be the pair for function $\left(\mu, \mu_{0}\right):(N, M) \rightarrow(\grave{N}, \grave{M})$ where $\grave{\alpha} o \mu=\mu_{\mathrm{o}} o \alpha$, $\grave{\beta} o \mu=\mu_{\mathrm{o}} o \beta, \mu(\lambda(n, \grave{n}))=$ $\grave{\lambda}(\mu(n), \mu(\grave{n}))$ for all $(n, \grave{n}) \in N * N$ [3]
If $\left(\mu, \mu_{\mathrm{o}}\right):(N, M) \rightarrow(\grave{N}, \grave{M})$ is the morphism for groupoids implies a kernal of μ be a set ker $\mu=$ $\{n \in N \mid \mu(n) \in \grave{\omega}(\grave{M})\}[2]$.
2. On Topological groupoid: Definition(1):[1]Suppose $r: S \rightarrow H, \mathfrak{r}_{1}: L \rightarrow H$ is continuous maps, when S, L and H be topological spaces. Then the fiber product of r and \mathfrak{r}_{1} is $S_{H}^{\times} L \quad=\left\{(s, l): \mathfrak{r}(s)=\mathfrak{r}_{1}(l)\right\}$ which is a sub space of $S_{H}^{\times} L$. i.e, the next diagram :

(1)... is commutative in \mathbf{T} where
$\mathfrak{r}_{1}=\left.\operatorname{pr}_{1}\right|_{S_{H}^{\times} L}, \mathfrak{r}=\left.\operatorname{pr}_{2}\right|_{S_{H L}^{\times} L}$, and \boldsymbol{T} the category of topological spaces and continuous maps. The shape (1) result an universal property ,i.e, let K denotes any topological space. and $\mathfrak{r}_{2}: \mathrm{K} \rightarrow \mathrm{S}, \mathfrak{r}_{2}: \mathrm{K} \rightarrow \mathrm{L}$ both continuous functions in \boldsymbol{T} s.tr $\circ \mathfrak{r}_{2}=\mathfrak{r}_{1} \circ \mathfrak{r}_{2}$ then there exist a unique continuous function $\theta: K \rightarrow S \times$ L making the following diagram:

The definition of the function θ is $\theta(b)=\left(\mathrm{r}_{2}(\mathrm{~b}), \dot{r}_{2}(\mathrm{~b})\right)$ for every $b \in K . \operatorname{In}(1)$, if r is injective or surjective map so is \grave{r} and the same thing applies to \mathfrak{r}_{1} and \mathfrak{r}_{1}.

Definition (2):[2]

Suppose S , L is topological space Then $\mathrm{r}: S \rightarrow L$ be call proper ,let a function $\mathrm{r} \times I_{H}: S \times$ $H \rightarrow L \times H$ is closed for all topological space H and \mathfrak{r} is continuous .

Proposition (3):[4]

Let $\mathrm{r}: S \rightarrow L$ be continuous injective function then \mathfrak{r} is proper function if and only if \mathfrak{r} is closed function and \mathfrak{r} is homeomorphism of S on to a closed subspace of L.

Proposition (4):[2]

If we define a proper function $\mathrm{r}: S \rightarrow L$, implies a restriction for r into closed of subset B for S be the proper function of B into L.

Remark (5):[3]

If (N, M) is any groupoid, then:
(1)The subset of N denoted by $N_{x}=\alpha^{-1}(x)$ is known as the α-fiber at $x \in M$.
(2)The subset of N denoted by ${ }_{y} \mathrm{~N}=\beta^{-1}(y)$ is called the β-fiber at $\in M$.
(3) ${ }_{y} N_{x}=N_{\mathrm{x}} \cap_{\mathrm{y}} N$ a set for elements in N s.t have y as a target and
x as a source
(4) The function $\tau: N \rightarrow M \times M$; $\tau(n)=(\beta(n), \alpha(n))$ is known as the transitor of N and ${ }_{y} N_{x}=\tau^{\text {- }}$ ${ }^{1}(y, x)$, for every $x, y \in M$.

Definition (6):[2]

The topological group spaces be the set \mathcal{T} containing structures:
(1) \mathcal{T} be the topological space .
(2) \mathcal{T} is a group.

The inversion law $v: \mathcal{J} \rightarrow \mathcal{T}$ and the composition law $\gamma: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ are both continuous.
Definition (7):[2]
If \mathcal{S} is a topological space, \mathcal{T} is the topological group. The left action for \mathcal{T} into \mathcal{S} be the continuous function $\pi: \mathcal{T} \times \mathcal{S} \rightarrow \mathcal{S}$ with the following properties:
(1) $\pi(e, u)=u$, for all $u \in \mathcal{S}$ where e is the element of identity in \mathcal{T}.
(2) $\pi(a, \pi(h, u))=\pi(\gamma(a, h), u), \forall u \in \mathcal{S}$, where γ is the law of composition of \mathcal{T}.

The action π and the space \mathcal{S} is known as group space and indicated by \mathcal{T}-space more specifically (left \mathcal{T} - space).

Definition (8):[4]

If \mathcal{S} be a \mathcal{T}-space then:
(1)The orbit of $u \in \mathcal{S}$ is defined as $\operatorname{orb}(u)=\pi(u, \mathcal{T})=\{\pi(u, a): a \in \mathcal{T}\}$ and the collection of \mathcal{S} orbits is known to as orbit space and represented by $\mathcal{S} / \mathcal{T}$.
(2) The stabilizer of $u \in \mathcal{S}$ is the set of
(2) The stabilizer of $u \in \mathcal{S}$ is the set of elements in \mathcal{T} that fix u. $\operatorname{stab}(u)=\mathcal{T}_{u}=\{a \in \mathcal{T} \mid \pi(a, u)=$ $u\}$.
(3) \mathcal{S} is free \mathcal{T}-space if the action of \mathcal{T} on \mathcal{S} is free.

Definition (9):[6]

Let \mathcal{S} be a \mathcal{T}-space. An action π of \mathcal{T} on \mathcal{S} is said to be:
(1) Transitive if $\operatorname{orb}(u)=\mathcal{S}$ for all $\in \mathcal{S}$.
(2) Trivial if ker $=\mathcal{T}$.
(3) Free if the stabilizer of every element is trivial, i.e. $\operatorname{stab}(u)=\{e\}$, for all $u \in \mathcal{S}$.

Theorem (10):[1]

If \mathcal{S} is Hausdorff space and \mathcal{S} be \mathcal{T}-space with \mathcal{J} compact and then:
(1) $\mathcal{S} / \mathcal{T}$ is Hausdorff .
(2) The law of action $\pi: \mathcal{S} \times \mathcal{T} \rightarrow \mathcal{S}$ is a closed map.
(3) $\mathcal{S} / \mathcal{T}$ is compact if and only if \mathcal{S} is compact
(4) The map $\varphi: \mathcal{S} \rightarrow \mathcal{S} / \mathcal{J}$ is proper.

Definition (11):[6]

The topological groupoid be the groupoid (N, M) with topologies onto , M s.t a functions $\beta: N \rightarrow M$, $\alpha: N \rightarrow M, w: M \rightarrow N, \lambda: N * N \rightarrow N$ and $\delta: N \rightarrow N$ are continuous functions where $N * N$ has the $N \times N$ subspace topology. A topological groupoid is denoted by $T G$.

Definition (12):[3]

A morphism of TG is morphism of groupoids $\left(f_{1}, f_{2}\right):(N, M) \rightarrow\left(N_{1}, M_{1}\right)$ such that f_{1} and f_{2} are continuous.
3. $S C$-groupoid, $S S C$-groupoid, $S C \mathcal{T}$-space, $\operatorname{SSC} \mathcal{T}$-space

Definition (1):[1]
$T G$ known as the source proper groupoid ((SC-groupoid)) if:
(1) The base space M is a Hausdorff.
(2) The map $\alpha: N \rightarrow M$ is a proper.

Proposition (2):[1]
If (N, M) be an $S C$-groupoid then the functions $w: M \rightarrow N, \beta: N \rightarrow M$ and $w: M \rightarrow N$ are proper.

Definition (3):

If (N, M) be an $S C$-groupoid then the function $\xi_{x}: N_{x} \times N_{x} \times N_{x} \rightarrow N$, is defined as $\xi_{x}\left(n_{1}, n_{2}, n_{3}\right)=$ $\lambda\left(n_{1}, \delta\left(n_{2} . n_{3}\right)\right) \quad$ is proper map, for every $x \in M$.

Definition (4):[1]

A \mathcal{T}-space \mathcal{S} is referred to as source proper group space ($(S C \mathcal{T}$-space)) if:
(1) \mathcal{S} is free \mathcal{T}-space
(2) The action groupoid $(\mathcal{S} \times \mathcal{T}, \mathcal{S})$ is $S C$-groupoid.

Definition (5):[4]

Let $\left(f_{1}, \grave{f}_{1}\right):\left(N_{1}, M_{1}\right) \rightarrow\left(\grave{N}_{1}, \grave{M}_{1}\right)$ and $\left(\xi_{2}, \grave{\xi}_{2}\right):\left(N_{2}, M_{2}\right) \rightarrow\left(\grave{N}_{2}, \grave{M}_{2}\right)$ each are proper functions, implies a direct $\operatorname{sum}\left(\xi_{1} \oplus \xi_{2}, \grave{\zeta}_{1} \oplus \grave{\xi}_{2}\right):\left(N_{1} \oplus N_{2}, M_{1} \oplus M_{2}\right) \rightarrow\left(\grave{N}_{1} \oplus \grave{N}_{2}, \grave{M}_{1} \oplus \grave{M}_{2}\right)$ be proper functions.

Proposition (6):[2]

Let $\mathcal{T}(\mathcal{S}, \varphi, M)$ is the cartan principal bundle implies $\mathcal{S} \times \mathcal{S} / \mathcal{T}$ be the $T G$ of base M. A pair $(\mathcal{S} \times \mathcal{S}$ $/ \mathcal{T}, M)$ is known as the Ehresmann groupoid.

Proposition (7):[4]

The function $\zeta^{*}: \mathcal{S}_{M}^{\times} \mathcal{S} \rightarrow \mathcal{T}$ is continuous if \mathcal{S} be $S C \mathcal{T}$-space.

Proposition (8):[4]

If (N, M) be an $S C$-groupoid then the α-fiber space N_{x} is $S C_{x} N_{x}$-space, for all $x \in M$.

Definition (9) :

A transitive $S C$-groupoid (N, M) is known as submersive groupoid (SSC -groupoid), when the function $\beta_{x}: N_{x} \times N_{x} \rightarrow M$ is submersion for every $x \in M$.
Example (10) :
Every compact transitive $T G$ on discrete space M is $S S C$-groupoid. Since for all $n \in N_{x}$ then $U=\left\{\beta_{x}\right.$ $\left.\left(n_{1}, n_{2}\right)\right\}$ is a neighborhood that is open in $M . \beta_{x}\left(n_{1}, n_{2}\right)$ and the constant map $v: U \rightarrow N_{x}$, $v\left(\beta_{x}\left(n_{1}, n_{2}\right)\right)=n_{1} n_{2}$ is continuous right inverse to $\beta_{x}: N_{x} \times N_{x} \rightarrow M$

Definition (11):[1]

An $S C \mathcal{T}$-space \mathcal{S} is called submersive group space " $S S C \mathcal{T}$-space" if the map $\varphi: \mathcal{S} \rightarrow \mathcal{S} / \mathcal{T}$ is submersion.

4. The results of SC-groupoid and SSC-groupoid
 Proposition (1):

If (N, M) be an SC-groupoid then the function $\xi_{x}: N_{x} \times N_{\chi} \underset{\text { n.time }}{ } \underset{\rightarrow}{\times} N_{x} \rightarrow N$, defined by $\left(n_{1}, n_{2}, \ldots, n_{\mathrm{n}}\right)=$ $\lambda\left(n_{1}, \delta\left(n_{2}, \ldots . n_{\mathrm{n}}\right)\right)$ is proper map, for every $x \in M$.

Proof:

Consider the following diagram:
$N_{x} \times N_{x} \times \ldots \times N_{x} \times_{M} N$

In which $C_{x} o P_{r 1}(n, h)=C_{x} o \lambda o \theta o(I \times \delta)(n, h)$ where C_{x} is the constant function, θ be the permutation function and, $w(x)$ be identity element in ${ }_{x} N_{x}$ and $N_{x} \times N_{x} \times \ldots \times N_{x} \times{ }_{M} N$ is the fiber product of β_{x} and β over M. Hence there exists a unique morphism
 ($\left.\lambda\left(\delta\left(n_{1}\right) . n_{2}\right), \ldots n_{\mathrm{n}}\right)$ by the universal property of fiber product making \boldsymbol{T} commutative over the whole diagram. Now, consider the following diagram:

$$
\left(\alpha_{1} \oplus \alpha_{2} \oplus \ldots . \ldots \alpha_{n}\right)
$$

In which $\beta o \lambda o(I \times \delta)\left(n_{1}, n_{2}, \ldots, n_{n}\right)=\beta x o P r_{1}\left(n_{1} . n_{2}, \ldots . n_{\mathrm{n}}\right)$, since $\beta\left(\lambda\left(n_{1}, \delta\left(n_{1} . n_{2}, \ldots . n_{\mathrm{n}}\right)\right)\right)=$ $\beta\left(n_{1}\right)$. Hence there exist a unique morphism $\theta_{x}: N_{x} \times N_{x} \times \ldots \times N_{x} \rightarrow N_{x} \times N_{x} \times \ldots \times N_{x} \times{ }_{M} N$, given by $\theta_{x}\left(n_{1} \cdot n_{2} \ldots . . n_{\mathrm{n}}\right)=\left(\lambda\left(\underset{n_{1}, \delta\left(n_{1} . n_{2} \ldots . n_{\mathrm{n}}\right)}{\left(n_{x}\right)}, n_{1}\right)\right.$ by the universal property of fiber product making the whole diagram commutative in \boldsymbol{T}.
Clearly $\theta_{x} o \psi_{x}=I$ and $\psi_{x} o \theta_{x}=I$. Hence θ_{x} is homeomorphism an then $\xi_{x}: N_{x} \times \ldots \times$ $N_{x}, \xi_{x}\left(n_{1}, n_{2} \ldots . . n_{\mathrm{n}}\right)=$ then $\xi_{x}: N_{x} \times N_{x} \times \ldots \times N_{x}, \xi_{x}\left(n_{1}, n_{2} \ldots . n_{\mathrm{n}}\right)=$ $\lambda\left(n_{1}, \delta\left(n_{2} \ldots . n_{\mathrm{n}}\right)\right), \forall\left(n_{1}, n_{2}, \ldots, n_{\mathrm{n}}\right) \in N_{x} \times N_{x} \times \ldots \times N_{x}$, is proper map (Propositions(2,4)), since $N_{x} \times N_{x} \times \ldots \times N_{x} \times{ }_{M} N=\left((\beta \times \ldots \times \beta)_{x} \times \beta\right)^{-1}(\Delta M)$ is closed subspace of $N_{x} \times N_{x} \times \ldots \times N$.

Proposition (2):

Let \mathcal{S}_{i} be $S C \mathcal{T}$-space, $i=1,2, \ldots, n$ then $\oplus_{i=1}^{n} \mathcal{S}_{i}$ is $S C \mathcal{T}$-space.

Proof:

Define $\psi: \oplus_{i=1}^{n} \delta_{i} \times \mathcal{T} \rightarrow \oplus_{i=1}^{n} \mathcal{S}_{i}$ by $\psi\left(\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{n}\right), r\right)=$ $\left(\pi_{1}\left(u_{1}, r\right) \oplus \pi_{2}\left(u_{2}, r\right) \oplus \ldots \oplus \pi_{n}(u, r)\right)$ for every $\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{n}\right) \in \oplus_{i=1}^{n} \mathcal{S}_{i}$ and $r \in \mathcal{T}$, which is continuous. Where π_{i} is a law of action of \mathcal{T} on $\mathcal{S}_{i}, i=1,2, \ldots, n$.
Now if $\psi\left(\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{n}\right), r\right)=\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{n}\right)$ then $r=e$ since \mathcal{S}_{i} is free \mathcal{T}-space, $i=$ $1,2, \ldots, n$. Hence $\oplus_{i=1}^{n} \mathcal{S}_{i}$ is free \mathcal{T}-space and the action groupoid ($\left.\left(\oplus_{i=1}^{n} \mathcal{S}_{i}\right) \times \mathcal{T}, \oplus_{i=1}^{n} \mathcal{S}_{i}\right)$ is SCgroupoid since $\oplus_{i=1}^{n} \mathcal{S}_{i}$ is a Hausdorff ($\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{n}$ are Hausdorff) and the source map: $\alpha:\left(\oplus_{i=1}^{n} \mathcal{S}_{i}\right) \times T \rightarrow \oplus_{i=1}^{n} \mathcal{S}_{i} ; \alpha\left(\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{n}\right), r\right)=\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{n}\right)=$ ($\left.\alpha_{1}\left(u_{1}, r\right) \oplus \alpha_{2}\left(u_{2}, r\right) \oplus \ldots \oplus \alpha_{n}\left(u_{n}, r\right)\right)$ be proper by using a next commutative diagram into \boldsymbol{T} :

The map defined by: $f: f\left(\left(u_{1}, r_{1}\right) \oplus\left(u_{2}, r_{2}\right) \oplus \ldots,\left(u_{\mathrm{n}}, r_{\mathrm{n}}\right)\right)=\left(\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{n}\right), r_{n}\right)$ which is $\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2} \oplus \ldots \oplus \mathcal{S}_{n}\right)$
surjective continuous since
$f=\left(\mathcal{S}_{1} \times \mathcal{T}\right) \oplus\left(\mathcal{S}_{2} \times \mathcal{T}\right) \oplus \ldots \oplus\left(\mathcal{S}_{n} \times \mathcal{T}\right) \xrightarrow{\cong}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2} \oplus \ldots \oplus \mathcal{S}_{n}\right) \times \mathcal{T} \xrightarrow{p_{r 1,2,3, \ldots n}}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2} \oplus \ldots \oplus \mathcal{S}_{n}\right) \times \mathcal{T}$
$\left(\left(u_{1}, r_{1}\right) \oplus\left(u_{2}, r_{2}\right) \oplus \ldots \oplus\left(u_{\mathrm{n}}, r_{\mathrm{n}}\right)\right) \rightarrow\left(\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{2}\right),\left(r_{1}, r_{2} \ldots, r_{n}\right)\right) \rightarrow$
$\left(\left(u_{1} \oplus u_{2} \oplus \ldots \oplus u_{2}\right), r_{\mathrm{n}}\right)$ Therefore $\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2} \oplus \ldots \oplus \mathcal{S}_{n}\right)$ is $S C \mathcal{T}$-space.

Proposition (3):

Let \mathcal{S}_{i} be $S C \mathcal{T}$-space, $i=1,2, \ldots, n$ then $\oplus_{i=1}^{n} \mathcal{S}_{i}$ is $S C \mathcal{T}$-space and the collection of every orbits $N=$ $\oplus_{i=1}^{n} \mathcal{S}_{i} / \mathcal{T}$ is $S C$-groupoid of base $M=\mathcal{S}_{i} / \mathcal{T}, i=1,2, \ldots, n$ with identification topology associated to the morphismhh $\eta: \oplus_{i=1}^{n} \mathcal{S}_{i} \rightarrow \oplus_{i=1}^{n} \mathcal{S}_{i} / \mathcal{T}, \eta\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{n}\right)=\left[\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{n}\right)\right]$.

Proof:

Since $\bigoplus_{i=1}^{n} \mathcal{S}_{i}$ is $\operatorname{SC\mathcal {T}}$-space (Proposition(4,2)).By $\psi \cdot\left(\oplus_{i=1}^{n} \mathcal{S}_{i}\right) \times \mathcal{T} \rightarrow \oplus_{i=1}^{n} \mathcal{S}_{i}$, defined by ψ $\left(\left(\mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus u_{n}\right), r\right)=\left(\varphi\left(\mathrm{u}_{\mathrm{n}}, r\right)\right)$ where π_{i} is the law of action of \mathcal{T} on $\mathcal{S}_{i}, i=1,2, \ldots, n$. To show that $\left(N=\oplus_{i=1}^{n} \mathcal{S}_{i} / \mathcal{T}, M=\mathcal{S}_{i} / \mathcal{T}, i=1,2, \ldots, n\right) \quad$ is \quad an $S C$-groupoid.(1) $\left(N=\oplus_{i=1}^{n} \mathcal{S}_{i} / \mathcal{T}, M=\mathcal{S}_{i} /\right.$ $\mathcal{T}, i=1,2, \ldots, n$) is $T G$ since the functions w and δ are continuous functions and λ is continuous and then α is continuous since the function $\oplus_{i=1}^{n} \varphi_{i}: \oplus_{i=1}^{n} \mathcal{S}_{i} \rightarrow \delta_{1} / \mathcal{T} \oplus \mathcal{S}_{2} / \mathcal{T} \oplus \ldots \oplus \mathcal{S}_{\mathrm{n}} / \mathcal{T}$ is constant on the identification function's fibers, η. Consequently, unique morphism exists $\grave{\tau}=\tau: N \rightarrow \oplus_{i=1}^{n} M_{i}$ in \boldsymbol{T} If There is a commutative relationship in \boldsymbol{T} in the following diagram:

by way of the identification function 's universal property, so $\alpha: N=\oplus_{i=1}^{n} \mathcal{S}_{i} / \mathcal{T} \xrightarrow{\grave{\imath}} \oplus_{i=1}^{n} M_{i} \xrightarrow{P_{1}} M_{1}$ is continuous and β is continuous, because $\beta=\alpha o \delta$. (2) The base space $M=\mathcal{S}_{i} / \mathcal{T}, i=1,2, \ldots, n$ is a Hausdorff (Theorem (2,10)).(3)To prove the source function $\alpha: \oplus_{i=1}^{n} \mathcal{S}_{i} / \mathcal{T} \rightarrow \mathcal{S}_{i} / \mathcal{T}, i=1,2, \ldots, n$, $\alpha\left(\left[\left(\mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus \mathrm{u}_{n}\right)\right]\right)=\varphi_{n}\left(\mathrm{u}_{n}\right)$ is proper. The map $\underset{\mathcal{T}}{ } \xlongequal{\cong}\left\{\left(\mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus \mathrm{u}_{n}, \mathrm{u}_{o}\right)\right\} \times \mathcal{T}$ $\xrightarrow{\Psi^{*}} \psi\left(\left(\mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus \mathrm{u}_{n}, \mathrm{u}_{o}\right), \mathcal{T}\right)$ is continuous and then all orbit $\psi\left(\left(\mathrm{u}_{1 \oplus \cdots \oplus}^{\circ} \cdots \mathrm{u}_{n}^{\circ}\right), \mathcal{T}\right)$ is compact $(\mathcal{T}$ is compact) s.t $\psi^{*}=\psi \mid\left\{\left(\mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus \mathrm{u}_{n}, \mathrm{u}_{o}\right) \times \mathcal{T}\right\}$. But α-fiber space, however $N_{\varphi\left(\mathrm{u}_{o}\right)}=\alpha^{-1}\left(\varphi\left(\mathrm{u}_{o}\right)\right)$ is closed subspace of $\psi\left(\left(\mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus \mathrm{u}_{n}, \mathrm{u}_{o}\right), \mathcal{T}\right)$ since $\mathcal{S}_{\mathrm{i}} / \mathcal{T}, i=1,2, \ldots, n$ is Hausdorff (Theorem $(2,10)$. Hence, α-fiber space $N_{\varphi\left(\mathrm{u}_{o}\right)}$ is compact for all $\mathrm{u}_{o} \in \mathcal{S}_{\mathrm{i}}, i=1,2, \ldots, n$. Hence, a fibers of α be compact. To prove that the function α be closed, the function $\mathrm{f}^{\mathrm{u}_{o}}: \mathcal{S}_{i} \rightarrow N^{\varphi\left(\mathrm{u}_{o}\right)}, i=1,2, \ldots, n$ defined by $\mathrm{f}_{\mathrm{u}_{o}}\left(\mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus \mathrm{u}_{n}\right)=\left[\left(\mathrm{u}_{o}, \mathrm{u}_{1} \oplus \mathrm{u}_{2} \oplus \ldots \oplus \mathrm{u}_{n}\right)\right]$ is homeomorphism. Thus $\mathcal{S}_{1}, \mathcal{S}_{2, \ldots}, \mathcal{S}_{\mathrm{n}}$ are compact $\left(N_{\varphi\left(\mathrm{u}_{o}\right)}\right.$ are compact) and then $\mathcal{S}_{i} / \mathcal{T}$ is compact, $i=1,2, . ., n$. Consider the commutative diagram that follows in \boldsymbol{T} :

where the $\eta, \oplus_{i=1}^{n} \varphi_{i}$ will be closed (Proposition (2,4)) $P_{r n}$ is closed. Thus, the function α is closed. Thus, the function α is proper and then $\left(\oplus_{i=1}^{n} \mathcal{S}_{i} / \mathcal{T}, \mathcal{S}_{\mathrm{n}} / \mathcal{T}\right)$ is an $S C$-groupoid.

Proposition (4):
If (N, M) be an $S C$-groupoid then the α-fiber spaces $\bigoplus_{i=1}^{n} N_{x_{i}}$ and $\oplus_{j=1}^{n} N_{y_{j}}$ are isomorphic group spaces for any any $n \in{ }_{y} N_{x}$.

Proof:

$\oplus{ }_{i=1}^{n} N_{x_{i}}$ is $S C_{x} N_{x}$-space and $\oplus{ }_{j=1}^{n} N_{y_{j}}$ is $S C_{y} N_{y}$-space $\oplus{ }_{i=1}^{n} N_{x_{i}}$ (Proposition (3,8)).
Homeomorphic to $\oplus{ }_{j=1}^{n} N_{y_{j}}$ by $R_{\delta\left(n_{1}, n_{2} \ldots, n_{n}\right)}: N_{x 1} \oplus N_{x 2} \oplus \ldots \oplus N_{x 3} \rightarrow$
$N_{y 1} \oplus N_{y 2} \oplus \ldots \oplus N_{y n}$
$R_{\delta\left(n_{1}, n_{2} \ldots, n_{n}\right)}\left(h_{1} \oplus h_{2} \oplus \ldots \oplus h_{n}\right)=\lambda\left(n_{1}, n_{2, \ldots,} n_{n}, \lambda\left(h_{1} \oplus h_{2} \oplus \ldots \oplus h_{n}, \delta\left(n_{1}, n_{2, \ldots,}\right.\right.\right.$,
$\left.n_{n}\right)$)), vertex group ${ }_{x} N_{x}$ isomorphic to the vertex group ${ }_{y} N_{y}$ using inner automorphism
$I_{n\left(n_{1}, n_{2} \ldots, n_{n}\right)}\left(h_{1} \oplus h_{2} \oplus \ldots \oplus h_{n}\right)=\lambda\left(n_{1}, n_{2} \ldots, n_{n}, \lambda\left(h_{1} \oplus h_{2} \oplus \ldots \oplus h_{n}, \delta\left(n_{1}, n_{2}, \ldots, n_{n}\right)\right)\right)$ and the next diagram be commutative into \boldsymbol{T} :

$$
N_{y_{1}} \oplus N_{y_{2}} \oplus \ldots \oplus N_{y_{n}}
$$

Where $\lambda_{1}=\left.\lambda\right|_{N_{x_{1}} \oplus N_{x_{2}} \oplus \ldots \oplus N_{x_{n}} \times_{x} N_{x}}$ and $\lambda_{2}=\left.\lambda\right|_{N_{y_{1}} \oplus N_{y_{2}} \oplus . . \oplus N_{y_{n}} \times_{y} N_{y}}$.
Hence the pair
$\left(\mathrm{R}_{\delta_{\left(n_{1}, n_{2}, \ldots, n_{\mathrm{n}}\right)}} I_{\left.n_{\left(n_{1}, n_{2}, \ldots, n_{\mathrm{n}}\right)}\right)}\right.$ represent an isomorphism of group spaces.

Proposition (5):

Suppose $\mathcal{S}_{1} \oplus \mathcal{S}_{2}$ is the $S C \mathcal{T}$-space, $\delta_{1} \oplus \delta_{2}$ is the equivarient space for $\mathcal{S}_{1} \oplus \mathcal{S}_{2}$, let $\delta_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}$ is a Hausdorff space and $\mathfrak{r}_{2}: \mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime} \rightarrow \mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}$ is continuous function then $\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right)_{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}^{\times \times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$ is the fiber product of equivarient function \mathfrak{r}_{1} and \mathfrak{r}_{2} over $S_{1}^{\prime} \oplus S_{2}^{\prime}$.

Proof:

Let $\left.\pi^{\prime} \otimes\left(S_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \underset{\mathcal{S}_{1} \oplus \dot{S}_{2}}{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)\right) \times \mathcal{T} \rightarrow$ $\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right)_{\dot{S}_{1} \oplus \dot{S}_{2}}^{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$ by
$\pi^{\prime}\left(\left(\mathrm{u}_{1}^{\prime \prime}, \mathrm{u}_{2}^{\prime \prime}\right),\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right), a\right)=\left(\left(\mathrm{u}_{1}^{\prime \prime}, \mathrm{u}_{2}^{\prime \prime}\right), \pi\left(\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right), a\right)\right)$ where π be a law action for \mathcal{T} onto $\mathcal{S}_{1} \oplus \mathcal{S}_{2} . \pi^{\prime}$ be the continuous action for \mathcal{T} onto $\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right)_{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}^{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$,
(1) $\pi^{\prime}\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right), \mathrm{e}\right)=\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right.$,
$\left.\pi\left(u_{1} \oplus u_{2}, \mathrm{e}\right)\right)=\left(\left(u_{1}^{\prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right)\right)$, since $\pi\left(\left(u_{1} \oplus u_{2}\right), e\right)=\left(u_{1} \oplus u_{2}\right)$ for
every $\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right)\right) \in\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right) \underset{S_{1}^{\prime} \times \delta_{2}^{\prime}}{\times}\left(u_{1} \oplus u_{2}\right)$. (2) π^{\prime}
$\left.\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right)\right), \mu\left(r_{1}, r_{1}\right)\right)=\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right), \pi\left(\left(u_{1} \oplus u_{2}\right), \lambda\left(r_{1}, r_{1}\right)\right)=\right.$
$\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right), \pi\left(\pi\left(\left(u_{1} \oplus u_{2}\right), r_{1}\right), r_{2}\right)=\pi^{\prime}\left(\pi^{\prime}\left(\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right), r_{1}\right), r_{2}\right)\right.\right.$, where λ is law of composition.(3) If $\pi^{\prime}\left(\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right)\right), \mathrm{r}_{1}\right)=\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right)\right) \Rightarrow \pi\left(\left(u_{1} \oplus u_{2}\right), \mathrm{r}\right)=\left(u_{1} \oplus u_{2}\right) \Rightarrow$ $\mathrm{r}=\mathrm{e}$, since $\mathcal{S}_{1} \oplus \mathcal{S}_{2}$ is free \mathcal{T}-space. (4) Consider the following diagram:

In which $r_{1} \circ \pi \circ\left(P_{2} \times i d_{T}\right)\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right), r\right)$
$=r_{2} \circ P_{1}\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right), r\right)$. Hence there exist a unique morphism $\theta=\pi^{\prime}:$
$\left(\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \underset{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}{\times \times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)\right) \times \mathcal{T} \rightarrow\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right)_{S_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}^{\left.\stackrel{\times}{(} \mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) \text { given by } \pi^{\prime}\left(\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right),\left(u_{1} \oplus u_{2}\right), r\right)=}$ ($\left(u_{1}^{\prime \prime} \oplus u_{2}^{\prime \prime}\right)$,
$\left.\pi\left(\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right), r\right)\right)$ making a whole diagram commutative into \boldsymbol{T} by an universal property for fiber product. Hence $\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \underset{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$ is free \mathcal{T}-space. To show that action groupoid $\left(\left(\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \underset{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) \times \mathcal{T},\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \underset{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)\right)\right.$ is SC-groupoid. $\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \quad$ is Hausdorff space and $\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$ is Hausdorff space (Definition (3,4)). Hence $\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right)_{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}^{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$ is Hausdorff
space (subspace of Hausdorff $\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right)_{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}^{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$.The fibers $\alpha^{-1}\left(u_{1} \oplus u_{2}\right)=\left\{\left(u_{1} \oplus u_{2}\right)\right\} \times T$ of a source function for the action groupoid $\left(\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) \times T\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)\right)$ are compact since $\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)$ is $S C \mathcal{T}$ space, but $\left\{\left(u_{1} \oplus u_{2}\right)\right\} \times \mathcal{T} \cong \mathcal{T}$ hence a source function for an action groupoid $\left.\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \underset{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) \times \mathcal{T},\left(\mathcal{S}_{1}^{\prime \prime} \oplus \mathcal{S}_{2}^{\prime \prime}\right) \underset{\mathcal{S}_{1}^{\prime} \oplus \mathcal{S}_{2}^{\prime}}{\times}\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)\right)$ is proper.(Proposition (2,4)).

Proposition (6):

Let (N, M) be an SSC-groupoid then $N_{x_{1}} \oplus N_{x_{2}}$ is $S S C_{x} N_{x}$-space, for all $x \in M$.

Proof:

$N_{x_{1}}$ and $N_{x_{2}}$ are $S C_{x} N_{x}$-space, (Proposition (3,8)).
$G_{x_{1}} \oplus G_{x_{2}}$ is $S C_{x} N_{x}$-space, (Proposition (4,2)).
To show that the function $\varphi_{x}: N_{x_{1}} \oplus N_{x_{2}} \rightarrow N_{x_{1}} \oplus N_{x_{2}} /{ }_{x} N_{\mathrm{x}}$ is submersion, for every $x \in M$. The maps $\varphi_{\mathrm{x}_{1}} * \varphi_{x_{2}}: N_{x_{1}} \oplus N_{x_{2}} \rightarrow N_{x_{1}} \oplus N_{x_{2}} /{ }_{\mathrm{x}} \mathrm{N}_{\mathrm{x}}$ and $\beta_{x}: N_{x_{1}} \oplus N_{x_{2}} \rightarrow M_{1} \oplus M_{2}$ are both identification function (β_{x} is surjective proper function,(Proposition (3,2)) and Proposition (2,4))) and constant on each other's fibres. The dotted arrows in the figure below:

existing, are unique into \boldsymbol{T} by universal property for identification, a function η_{x} be provided by $\eta_{x}\left(\varphi_{x_{1}} \oplus \varphi_{x_{2}}\left(n_{1}, n_{2}\right)\right)=\beta_{x}\left(n_{1}, n_{2}\right)$. Now, to show that the function $\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}: \mathrm{N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}} \rightarrow \mathrm{~N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}} /{ }_{\mathrm{x}} \mathrm{N}_{\mathrm{x}}$ is submersion. unique in \boldsymbol{T}.
$\operatorname{Let}\left(n_{1} \oplus n_{2}\right) \in \mathrm{N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}}, \varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\left(n_{1} \oplus n_{2}\right) \in \mathrm{N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}} /{ }_{\mathrm{x}} \mathrm{N}_{\mathrm{x}}, \eta_{x}\left(\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\left(n_{1} \oplus n_{2}\right)\right)=$
$\beta_{x}\left(n_{1}, n_{2}\right) \in M_{1} \oplus M_{2}$ then there is an open neighborhood $U_{\left(n_{1}, n_{2}\right)}$ of $\beta_{x}\left(n_{1}, n_{2}\right)$ in $M_{1} \oplus M_{2}$ and continuous right inverse $v: U \rightarrow \mathrm{~N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}}$ to $\beta_{x}: \mathrm{N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}} \rightarrow M_{1} \oplus M_{2}$ such that vo $\beta_{x}\left(n_{1} \oplus n_{2}\right)=$ ($n_{1} \oplus n_{2}$), (β_{x} is submersion (N, M) is $S S C$-groupiod).
Now define $v^{\prime}\left(n_{1} \oplus n_{2}\right): \eta_{x}^{-1}\left(\mathrm{U}_{\left(n_{1} \oplus n_{2}\right)}\right) \xrightarrow{\eta_{x}} \mathrm{U}_{\left(n_{1} \oplus n_{2}\right)} \xrightarrow{v} \mathrm{~N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}}$ by $v_{\left(n_{1} \oplus n_{2}\right)}^{\prime}(a)=v o \eta_{x}(a)$ where
$\eta_{x}{ }^{-1}\left(\mathrm{U}_{\left(n_{1} \oplus n_{2}\right)}\right)$ is open neighborhood of $\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\left(n_{1} \oplus n_{2}\right)$ in $\mathrm{N}_{\mathrm{x}_{1}} \oplus \mathrm{~N}_{\mathrm{x}_{2}} /{ }_{\mathrm{x}} \mathrm{N}_{\mathrm{x}} . v_{\left(n_{1} \oplus n_{2}\right)}^{\prime}$ is continuous and $\left.\left(\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\right) o v^{\prime}{ }_{\left(n_{1} \oplus n_{2}\right)}\right)(a)=\left(\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\right) \operatorname{ovon}_{x}(a)=\eta^{-1} o \eta_{x} o\left(\left(\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\right) o \operatorname{vo}_{x}(a)=\right.$ $\eta_{x}^{-1} o \beta_{x} o v o\left(\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\right)(a)=\eta_{x}^{-1} o \eta_{x}(a)=a$
And $\left.v^{\prime}{ }_{\left(n_{1} \oplus n_{2}\right)}\left(\varphi_{\mathrm{x}_{1}} \oplus \varphi_{x_{2}}\right)\left(n_{1} \oplus n_{2}\right)\right)=\operatorname{von}_{x}\left(\varphi_{x_{1}} \oplus \varphi_{x_{2}}\left(n_{1} \oplus n_{2}\right)\right)=v o \beta_{x}\left(n_{1} \oplus n_{2}\right)=n$.

Proposition (7):

$\left.\underset{\leftarrow}{\text { Let }} \underset{\leftarrow \text { ntime }}{ } N_{1} \times N_{2} \times \ldots \times \underset{\sim}{N_{n}}, M_{1} \times M_{2} \times \ldots \times M_{n}\right)$ be transitive $S C$-groupoid then Ehressmann groupoid

Proof:

The function $\xi_{x}: N_{x} \times N_{x} \times \ldots \times N_{x} \rightarrow N_{1} \times N_{2} \times \ldots \times N_{n}$ is surjective proper (Definition (3,3)). Next, the functions $\xi_{\mathrm{x}:} N_{x} \times N_{x} \stackrel{\leftarrow}{ } \times \ldots \times N_{x} \rightarrow N_{1} \times N_{2} \times \ldots \times N_{n}$ and $\eta_{x}: N_{x} \times N_{x} \times \ldots \times N_{x} \rightarrow N_{x} \times N_{x} \times \ldots \times N_{x} /{ }_{x} N_{\mathrm{x}}$ are both constants on the fiber of each other and identification functions. Hence, in the following figure, the dotted arrows:

exist single into \boldsymbol{T} by a universal property for identification function ,a function \mathfrak{r} be given by $\mathfrak{r}\left(\left[\left(n_{1}, n_{2} \ldots, n_{\mathrm{n}}\right)\right]\right)=\lambda\left(n_{1}, \delta\left(n_{2} \ldots, n_{\mathrm{n}}\right)\right)$ has to become homeomorphism. $\left(\mathfrak{r}, \eta_{x}\right)$ is the isomorphism for TG where η_{x} is the function presented by $\eta_{x}\left(\varphi_{\mathrm{x}}\left(n_{1}, n_{2} \ldots, n_{\mathrm{n}}\right)\right)=\beta_{x}\left(n_{1}, n_{2} \ldots, n_{\mathrm{n}}\right)$ where $\varphi_{\mathrm{x}}: N_{\mathrm{x}} \times N_{\mathrm{x}} \times \ldots \times N_{\mathrm{x}} \rightarrow N_{\mathrm{x}} \times N_{X} \times \ldots \times N_{X} /_{\mathrm{x}} N_{\mathrm{x}}$. (Proposition $(4,6)$).

Proposition (8):

Let $\mathcal{S}_{1} \oplus \mathcal{S}_{2}$ be an $\operatorname{SSC\mathcal {T}}$-space then Ehresmann groupoid $\left(\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) \times\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) / \mathcal{T},\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) / \mathcal{T}\right)$ is submersive groupoid.

Proof:

Let $N=\left(\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) \times\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right)\right) / \mathcal{T}, \mathrm{M}=\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) / \mathcal{T},(N, M)$ be an transitive SC -groupoid (Proposition
(4,3)) into prove that the function $\beta_{x}: N_{X} \oplus N_{X} \rightarrow M$ be a submersion. If $h=[(u \oplus \grave{u})$, $(\grave{u} \oplus \stackrel{\grave{u}}{)}] \in N_{\chi} \oplus N_{\chi}$, then
$\beta_{x}(h)=\varphi\left(u \oplus u^{\prime}\right)$ and there exists an open neighborhood V of $\varphi\left(u \oplus \mathrm{u}^{\prime}\right)$ in M as well as a continuous right inverse. $v *: V \rightarrow \mathcal{S}_{1} \oplus \mathcal{S}_{2}$ to φ s.t $\left.v * \circ \varphi\left(\mathrm{u} \oplus \mathrm{u}^{\prime}\right)\right)=\left(u \oplus u^{\prime}\right)\left(\varphi: \mathcal{S}_{1} \oplus \mathcal{S}_{2} \rightarrow M=\right.$ $\left(\mathcal{S}_{1} \oplus \mathcal{S}_{2}\right) / \mathcal{T}$ is submersion, (Definition (3,11)). Define $v * *: V \rightarrow N_{x}$ by: $v * *(y)=[(v *(y)$, $(\grave{u} \oplus \stackrel{\grave{u}}{)})]$ for every $y \in V \cdot \beta_{x} \mathrm{o} v * * \quad(y)=\beta_{x}\left([(\nu *(y),(u \oplus \grave{u})])=\varphi o v *(y)=y=I_{V}\right.$ for every $y \in V$ and $v^{* *}(y) \mathrm{o} \beta_{x}(h)=v^{* *}\left(\beta\left[\left(u \oplus u^{\prime}\right),(\stackrel{\grave{u}}{\oplus} \oplus \hat{\grave{u}})\right]\right)=v * *\left(\varphi\left(\mathrm{u} \oplus \mathrm{u}^{\prime}\right)\right)=[(v *(\varphi(u \oplus$ $\left.\left.u^{\prime}\right),(\grave{u} \oplus \stackrel{\grave{u}}{)})\right]=\left[\left(u \oplus u^{\prime}\right),(\hat{u} \oplus \stackrel{\grave{u}}{\dot{u}})\right]=h$

Proposition (9):

Let (N, M) be $S S C$-groupoid then Ehresmann groupoid ($\left(N_{\mathrm{x}} \times N_{\mathrm{x}} \times \ldots \times N_{\mathrm{x}} /_{\mathrm{x}} N_{\mathrm{x}}, N_{\mathrm{x}} /_{\mathrm{x}} N_{\mathrm{x}}\right.$) is SSCgroupoid for every $x \in M$.

Proof:

If $N=N_{\mathrm{x}} \times N_{\mathrm{x}} \times \ldots \times N_{\mathrm{x}} /{ }_{\mathrm{x}} N_{\mathrm{x}}, M=N_{\mathrm{x}} /{ }_{\mathrm{x}} N_{\mathrm{x}},(N, M)$ be an transitive SC-groupoid (Proposition (4,3)) to display that a function $\beta_{X}: N_{\mathrm{x}} \rightarrow M$ be submersion. If $h=\left[\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right] \in N_{\mathrm{x}}$, then $\beta_{X}(h)=\varphi\left(u_{1}\right)$, there exists the open neighborhood V of $\varphi\left(u_{1}\right)$ in M and continuous right inverse $v *: V \rightarrow N_{\mathrm{x}}$ into φ s.t $v * o \varphi(u)=u\left(\varphi: N_{x} \rightarrow M=N_{x} /_{x} N_{x}\right.$ is submersion, (Definition (2,8)). Define $v^{*}: \mathrm{U} \rightarrow \mathrm{N}_{\mathrm{x}}$ by: $v^{*}{ }^{\prime}$ $(\mathrm{y})=\left[\left(v^{*}(\mathrm{y}), \mathrm{u}^{\bullet}\right)\right]$ for every $\mathrm{y} \in \mathrm{U}$. Define $v^{* *}: \mathrm{V} \rightarrow N_{x}$ by: $v^{* *}(y)=\left[\left(v *(y),\left(u_{2}, \ldots, u_{n}\right)\right)\right]$ for every $y \in V$. $\left.\beta_{x} \mathrm{ov} v *(y)=\beta_{X}\left(\left[\left(v *(y), u_{1}\right)\right)\right]\right)=\varphi$ ov* $(y)=y=I_{V}$ for every $y \in V$ and $\quad v * *(y) o \beta_{X}(h)=$ $v * *\left(\beta\left[\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right]\right)=v * *\left(\varphi\left(u_{1}\right)\right)=\left[\left(\nu *\left(\varphi\left(u_{1}\right), u_{2}, \ldots, u_{n}\right)\right)\right]=\left[\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right]=h$.

5. Conclusion:

We have studied topological groupoid. we also studied privately type of topological groupoid which is SC-groupoid, SSC-groupoid, SC \mathcal{T}-space and SSC \mathcal{T}-space and the relationships among them written as proposition.

6. Acknowledgement

The authors (Seemaa Mohammed Ali and Taghreed Hur Majeed) would be grateful to thank Mustansiriyah University in Baghdad, Iraq. (www.mustansiriyah.ed.iq)in the current effort for their assistance and cooperation.

References:

[1] R. Brown, "Topology and Groupoids" Book surge LIC, Deganwy, United Kinkdom, 2020.
[2] M. H. Gürsoy, "General Topology Groupoids" Punjab University Journal of Mathematics, vol. 53, No.2, pp. 35-49, 2021.
[3] M. H. Gürsoy and I. Ieen, "The Homorphism of Topology Groupoids" NOVISAD J. MATH., vol.44, No1, pp. 129-141, 2014...
[4]T.H. Majeed, Algebraic Topology: On Some Results of Category for Source Proper Groupoid Space (Journal of Interdisciplinary Mathematics, United Kingdom, 2022), PP.1-6.
[5] T. H. Majeed, Action of topological groupoid on topological space (The International Journal of Nonlinear Analysis and Applications Iran, 2022), PP.85-89.
[6] V. Marin and J. Avila and H. Pinedo, "Isomorphism Theorems for Groupoids and Some Application" Hindawi, International Journal of Mathematics and Mathematical Sciences, vol.2020,2020.
[7] M. Q. Mann'a " Groupoid and Topological Qoutient Group" Global Journal of pure and applied Mathematics, vol.13, No. 7, pp. 3173-3191, 2017.
[8]Z.K and T.Majeed, " Action of Representation for Lie Groups " UtilitasMathematica, ISSN 03153681 volume 120,pp .84-98, 2023.

