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Abstract: 

In this work, we introduce new kinds of topological groupoid which are source proper groupoid 

, submersive   groupoid , and use them to construct a new kind of groupoid space which are source 

proper group space and submersive group space . The main objective of this paper is to find new 

relationships between these types written as proposition and can be used in the field of algebraic 

topology. 
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1. Introduction: 

The main objective of this research is to study certain types of topological groupoid, which is source 

proper groupoid, denoted by (SC-groupoid), submersive groupoid,denoted by (SSC-groupoid),source 

proper group-space ,denoted by(SC 𝒯-space )and submersive group-space denoted by (SSC 𝒯-space 

)and also some properties of these groupoids are studied. The category C contain for:(i) The class for 

objects. (ii) If 𝔯 ∈  𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 (𝑆, 𝐿) with domain 𝑆 and range 𝐿, we write 𝔯: 𝑆 → 𝐿 for all arranged pair 

of things 𝑆 and 𝐿. (iii) A  function that associates two morphisms 𝔯: 𝑆 → 𝐿 and 𝔯1: 𝐿 → 𝐻 their composite 

𝔯1𝑜𝔯 ∶ 𝑆 → 𝐻  for all ordered triple of objects 𝑆, 𝐿, and 𝐻. This satisfies the following axioms:(1) The 

associative axiom: let 𝔯: 𝑆 → 𝐿, 𝔯1:𝐿 → 𝐻 , 𝔯2: 𝐻 → 𝐾 then 𝔯2(𝔯1𝔯) = ( 𝔯2 𝔯1) 𝔯 .(2) the identity axiom 

of all objects 𝐿 there is the morphism 𝐼𝐿: 𝐿 → 𝐿  where let 𝔯: 𝑆 → 𝐿, implies 𝐼𝐿𝔯 =  𝔯, and if 𝔯1: 𝐿 → 𝐻, 

then 𝔯1𝐼𝐿 = 𝔯1[5].The category of continuous maps and topological spaces that is denoted by T[3].A 

groupoid  be the pair of sets (𝑁,𝑀) where be get: (1) onto functions  𝛼: 𝑁 →  𝑀 ,  𝛽: 𝑁 → 𝑀  they  

are called respectively, a source function , a target function . (2) one-to-one function  𝓌: 𝑀 →

 𝑁 known as the object inclusion with 𝛼𝑜𝓌 = 𝐼𝑀 , 𝛽𝑜𝓌 = 𝐼𝑀 where  𝐼𝑀 ∶ 𝑀 → 𝑀  .(3) A partial 

composition 𝜆 in 𝑁 . A compositional rule for the set  𝑁 ∗  𝑁 is defined as 𝑁 ∗  𝑁 = {(𝑛1, 𝑛2) ∈  𝑁 ×

𝑁|𝛼 (𝑛1)= 𝛽(𝑛2)} "fiber product of 𝛽 and 𝛼 over 𝑀" s.t :(i)  𝜆(𝑛, 𝜆(𝑛1, 𝑛2))  =

 𝜆(𝜆(𝑛1, 𝑛2), 𝑛2), ∀ (𝑛, 𝑛1), (𝑛1, 𝑛2)  ∈  𝑁 ∗  𝑁.(ii) 𝛼 (𝜆 (𝑛1, 𝑛2)) = 𝛼 (𝑛2), 𝛽(𝜆 (𝑛1, 𝑛2))=𝛽(𝑛1) for 

each (𝑛1, 𝑛2) ∈  𝑁 ∗  𝑁.                    

(iii)  𝜆 (𝑛1,𝓌(𝛼(𝑛1)))= 𝑛1  and 𝜆 (𝓌(β(𝑛1)), 𝑛1 )= 𝑛1 , for all 𝑛1  ∈ 𝑁.  (4) A bijection 𝛿: 𝑁 →  𝑁 

known as the inversion of 𝑁 satisfying:(a)𝛼(𝛿(𝑛1)) = 𝛽(𝑛1), 𝛽(𝛿(𝑛1)) = 𝛼(𝑛1)), for all 𝑛1 ∈

 𝑁.(b)𝜆(𝛿(𝑛1), 𝑛1)= 𝓌(𝛼 (𝑛1)), 𝜆(𝑛1, 𝛿(𝑛1))= 𝓌(𝛽(𝑛1)), for all 𝑛1 ∈ 𝑁. We they note 𝛿(𝑛1)= (𝑛1)
-

1, known an inverse for element 𝑛1 ∈ 𝑁 ,𝓌(𝓍) =𝓍 known a unit for element on 𝑁 associated 

into an element 𝑥 ∈  𝑀. We will take notes (𝑛1, 𝑛2)= 𝑛1𝑛2. We say that  𝑁 is a groupoid on 

𝑀 or 𝑁 is known a groupoid 𝑀 be known of base.  
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We call say this is  𝑁 be the groupoid in 𝑀 [7].see[8] For every s ∈ S,∏ 𝑥𝑠
   𝑃𝑠    
→   𝑥𝑠𝑠∈𝑆  such that 

𝑃𝑠(𝑥) = 𝑥𝑠, for ever 𝑠 ∈ ∏ 𝑥𝑠𝑠∈𝑆 , 𝑃𝑠 is called the projection map[7]. The morphism for groupoids be 

the pair for function   (𝜇, 𝜇o): (𝑁,𝑀)( �̀�, �̀�)    where    �̀�𝑜 𝜇 = 𝜇o𝑜𝛼,   �̀�𝑜 𝜇 = 𝜇o𝑜𝛽 , 𝜇(𝜆(𝑛, �̀�)) =

�̀�(𝜇(𝑛), 𝜇(�̀�)) for all  (𝑛, �̀�) ∈ 𝑁 ∗ 𝑁 [3]  

If (𝜇, 𝜇o): ( 𝑁,𝑀)( �̀�, �̀�) is the morphism for groupoids implies a kernal of  𝜇  be a set ker 𝜇 = 

{𝑛𝑁│ 𝜇 (𝑛) ∈ �̀�(�̀�)}[2]. 

2. On Topological groupoid: Definition(1):[1]Suppose 𝑟: 𝑆 → 𝐻 , 𝔯1: 𝐿 → 𝐻 is continuous maps, when 

𝑆 , 𝐿 and 𝐻 be topological spaces .Then the fiber product of r and 𝔯1 is 𝑆 
 𝐿𝐻
×     

 ={(𝑠, 𝑙): 𝔯(𝑠)= 𝔯1 (𝑙)} 

which is a sub space of 𝑆 
 𝐿𝐻
×  . i.e, the next diagram : 

 

  𝔯1̀ = pr₁ | 𝑆  𝐿𝐻
×  , 𝔯 =pr₂ | 𝑆  𝐿𝐻

×  ,and T the category of topological spaces and continuous maps. The shape 

(1  )  result an universal property ,i.e, let K denotes any topological space. and 𝔯2: K→S, 𝔯2̀: K→L both 

continuous  functions in T s.t 𝔯 ∘ 𝔯2 = 𝔯1 ∘ 𝔯2̀ then there exist a unique continuous function 𝜃 ∶ 𝐾 → 𝑆 ×

𝐿  making the following diagram: 

  

The definition of the function 𝜃 is 𝜃(𝑏) = (𝔯2 (b), 𝔯2̀(b))for every 𝑏 ∈  𝐾. In(1), if r                                                                               

is injective or surjective map so is �̀� and the same thing applies to 𝔯1 and 𝔯1̀. 

Definition (2):[2] 

Suppose S , L is topological space Then 𝔯: 𝑆 → 𝐿  be call proper ,let a function 𝔯 × 𝐼𝐻 ∶ 𝑆 ×

𝐻 → 𝐿 × 𝐻 is closed for all topological space 𝐻 and 𝔯 is continuous . 

Proposition (3):[4] 

Let 𝔯: 𝑆 → 𝐿 be continuous injective function then 𝔯 is proper function if and only if 𝔯 is closed function 

and 𝔯 is homeomorphism of 𝑆 on to a closed subspace of 𝐿. 

Proposition (4):[2] 

If we define a proper function 𝔯: 𝑆 → 𝐿, implies a restriction  for 𝔯 into closed of subset 𝐵 for 𝑆 be the 

proper function of 𝐵 into 𝐿.  

(1)…is commutative      

in T where 
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Remark (5):[3] 

If (𝑁,𝑀) is any groupoid, then: 

(1)The subset of 𝑁 denoted by 𝑁𝑥 = 𝛼
-1(𝑥) is known as the 𝛼-fiber at 𝑥 ∈  𝑀. 

(2)The subset of 𝑁 denoted by  N𝑦
  = 𝛽-1(𝑦) is called the 𝛽 -fiber at ∈  𝑀 . 

(3) 𝑁𝑥𝑦
  = 𝑁x ∩ y𝑁 a set for elements in 𝑁 s.t have 𝑦 as a target and 

 𝑥 as a source   

(4) The function 𝜏:𝑁 → 𝑀 ×  𝑀; 𝜏(𝑛) = (𝛽(𝑛), 𝛼(𝑛)) is known as the transitor of 𝑁 and 𝑁𝑥𝑦
 = 𝜏-

1(𝑦, 𝑥), for every 𝑥, 𝑦 ∈  𝑀. 

Definition (6):[2] 

The topological group spaces be the set 𝒯containing structures: 

(1) 𝒯 be the topological space . 

(2) 𝒯 is a group. 

The inversion law 𝜈: 𝒯 →  𝒯and the composition law 𝛾: 𝒯 ×  𝒯 →  𝒯 are both continuous.  

Definition (7):[2] 

If 𝒮 is a topological space ,  𝒯 is the topological group. The left action for 𝒯 into 𝒮 be the continuous 

function 𝜋:𝒯 × 𝒮 → 𝒮 with the following properties: 

 (1) 𝜋 (𝑒, 𝑢)  =  𝑢, for all 𝑢 ∈ 𝒮 where 𝑒 is the element of identity in 𝒯.   

(2) 𝜋 (𝑎, 𝜋 (ℎ, 𝑢))  =  𝜋 (𝛾(𝑎, ℎ), 𝑢), ∀ 𝑢 ∈  𝒮, where 𝛾 is the law of composition of 𝒯. 

The action 𝜋 and the space 𝒮 is known as group space and indicated by 𝒯 -space more specifically (left 

𝒯 - space).  

Definition (8):[4] 

If 𝒮 be a 𝒯  -space then:   

(1)The orbit of 𝑢 ∈ 𝒮 is defined as 𝑜𝑟𝑏(𝑢) = 𝜋 (𝑢, 𝒯) = { 𝜋 (𝑢, 𝑎 ): 𝑎 ∈ 𝒯 } and the collection of 𝒮 

orbits is known to as orbit space and represented by 𝒮/ 𝒯 . 

(2) The stabilizer of 𝑢 ∈ 𝒮 is the set of 

(2) The stabilizer of 𝑢 ∈ 𝒮 is the set of elements in 𝒯 that fix 𝑢. 𝑠𝑡𝑎𝑏(𝑢) = 𝒯u = {𝑎 ∈ 𝒯 |𝜋(𝑎, 𝑢) =

𝑢}.  

(3) 𝒮 is free 𝒯-space if the action of  𝒯 on 𝒮 is free. 

Definition (9):[6] 

Let 𝒮 be a 𝒯 -space. An action 𝜋 of  𝒯 on 𝒮  is said to be:  

(1) Transitive if  𝑜𝑟𝑏 (𝑢)  = 𝒮 for all  𝒮 .  

(2) Trivial if ker =  𝒯 .  

(3) Free if the stabilizer of every element is trivial, i.e. 𝑠𝑡𝑎𝑏(𝑢) = {𝑒},  for all  𝑢 𝒮 .  

Theorem (10):[1]  

 If 𝒮 is Hausdorff space and  𝒮 be 𝒯 -space with 𝒯 compact and then: 

(1) 𝒮 / 𝒯 is Hausdorff . 

(2) The law of action 𝜋: 𝒮 ×  𝒯 → 𝒮 is a closed map. 
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(3) 𝒮 / 𝒯 is compact if and only if 𝒮 is compact 

(4) The map 𝜑: 𝒮 →  𝒮 / 𝒯 is proper.   

Definition (11):[6] 

The topological groupoid be the groupoid (𝑁,𝑀) with topologies onto  , 𝑀 s.t a functions 𝛽: 𝑁 → 𝑀 , 

𝛼: 𝑁 →  𝑀 , 𝓌: 𝑀 →  𝑁 , 𝜆:𝑁 ∗  𝑁 →  𝑁  and 𝛿: 𝑁→ 𝑁 are continuous functions where 𝑁 ∗ 𝑁 has 

the𝑁 ×  𝑁  subspace topology .  A topological groupoid is denoted by 𝑇𝐺. 

Definition (12):[3]  

A morphism of TG is morphism of groupoids (𝑓1, 𝑓2): (𝑁, 𝑀) → (𝑁1,𝑀1)  such that 𝑓1 and 𝑓2 are 

continuous. 

3.  𝑺𝑪-groupoid , 𝑺𝑺𝑪-groupoid , 𝑺𝑪 𝓣 -space ,  𝑺𝑺𝑪 𝓣 -space  

Definition (1):[1] 

𝑇𝐺 known as the source proper groupoid  ((𝑆𝐶-groupoid)) if:  

(1) The base space 𝑀 is a Hausdorff. 

(2) The map  ∶ 𝑁𝑀 is a proper.   

Proposition (2):[1] 

If (𝑁,𝑀) be an 𝑆𝐶-groupoid then the functions 𝓌:𝑀𝑁, :𝑁𝑀  and 𝓌:𝑀𝑁 are proper. 

Definition (3): 

If (𝑁,𝑀) be an 𝑆𝐶-groupoid then the function 𝜉𝑥: 𝑁𝑥 × 𝑁𝑥 × 𝑁𝑥 → 𝑁,  is defined as 𝜉𝑥(𝑛1, 𝑛2, 𝑛3) =

𝜆(𝑛1, 𝛿(𝑛2. 𝑛3))    is proper map, for every 𝑥 ∈ 𝑀.  

Definition (4):[1] 

 A 𝒯-space 𝒮 is referred to as source proper group space ((𝑆𝐶𝒯 -space)) if: 

(1) 𝒮 is free 𝒯-space 

(2) The action groupoid (𝒮 × 𝒯, 𝒮) is 𝑆𝐶-groupoid.  

Definition (5):[4] 

Let (𝑓1, �̀�1): (𝑁1,𝑀1)  →  (�̀�1, �̀�1) and (𝜉2, �̀�2): (𝑁2, 𝑀2) →  (�̀�2, �̀�2) each are proper functions, 

implies a direct sum(𝜉1⊕𝜉2,�̀�1⊕ �̀�2): (𝑁1⊕𝑁2, 𝑀1⊕ 𝑀2)  →  (�̀�1⊕ �̀�2, �̀�1⊕ �̀�2) be proper 

functions.   

Proposition (6):[2] 

Let 𝒯(𝒮, 𝜑,𝑀) is the cartan  principal bundle implies 𝒮 𝒮/ 𝒯 be the 𝑇𝐺 of base 𝑀. A pair (𝒮 𝒮 

/ 𝒯,𝑀) is known as the Ehresmann groupoid. 

Proposition (7):[4] 

The function  𝜉*: 𝒮 𝒮𝑀
×  𝒯 is continuous if 𝒮 be 𝑆𝐶 𝒯 -space. 
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Proposition (8):[4] 

If (𝑁,𝑀) be an 𝑆𝐶-groupoid then the -fiber space 𝑁𝑥 is 𝑆𝐶𝑥𝑁𝑥-space, for all 𝑥𝑀. 

Definition (9) :  

A transitive 𝑆𝐶-groupoid (𝑁,𝑀) is known as submersive groupoid (𝑆𝑆𝐶 -groupoid), when the function  

𝛽𝑥:𝑁𝑥  ×  𝑁𝑥  𝑀 is submersion for every 𝑥𝑀. 

Example (10) :   

Every compact transitive 𝑇𝐺 on discrete space 𝑀 is 𝑆𝑆𝐶-groupoid. Since for all 𝑛 𝑁𝑥  then 𝑈 = { 𝛽𝑥 

(𝑛1 ,  𝑛2 ) } is a neighborhood that is open in 𝑀 . 𝛽𝑥  (𝑛1 ,  𝑛2 ) and the constant map : 𝑈𝑁𝑥   , 

(𝛽𝑥(𝑛1, 𝑛2)) = 𝑛1 𝑛2 is continuous right inverse to 𝛽𝑥: 𝑁𝑥  × 𝑁𝑥  𝑀   

 

Definition (11):[1] 

An 𝑆𝐶𝒯 -space 𝒮  is called submersive group space " 𝑆𝑆𝐶𝒯 -space" if the map 𝜑: 𝒮  𝒮/𝒯  is 

submersion. 

4. The results of SC-groupoid and SSC-groupoid  

Proposition (1): 

If (𝑁,𝑀) be an SC-groupoid then the function  𝜉x:𝑁𝑥 𝑁𝑥  × …× 𝑁𝑥 𝑁, defined by(𝑛1, 𝑛2, … , 𝑛n) =
𝜆(𝑛1, 𝛿(𝑛2. … . 𝑛n))   is proper map, for every 𝑥𝑀. 

Proof:  

Consider the following diagram: 

 

 

 
In which 𝐶𝑥𝑜𝑃𝑟1(𝑛, ℎ) = 𝐶𝑥𝑜𝜆 𝑜𝑜(𝐼𝛿)(𝑛, ℎ) where 𝐶𝑥 is the constant function, be the permutation 

function and, 𝓌(𝑥) be identity element in 𝑁𝑥𝑥
  and 𝑁𝑥 𝑁𝑥  × …× 𝑁𝑥 ×𝑀 𝑁  is the fiber product of 𝛽𝑥 

and  over 𝑀. Hence there exists a unique morphism 


𝑥
:𝑁𝑥 𝑁𝑥  × …× 𝑁𝑥 ×𝑀 𝑁𝑁𝑥𝑁𝑥  × …× 𝑁𝑥is given by 

𝑥
(𝑛1, 𝑛2, … , 𝑛n) =

(λ(δ(𝑛1). 𝑛2),…𝑛n) by the universal property of fiber product making T commutative over 

the whole diagram. Now, consider the following diagram:  

𝑁𝑥 𝑁𝑥  × …× 𝑁𝑥 ×𝑀 𝑁 

← n.time→ 

← n.time→ ← n.time→ 

← n.time→ 
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In which 𝑜𝜆𝑜(𝐼𝛿)(𝑛1, 𝑛2, … , 𝑛n) =  𝑥𝑜𝑃𝑟1(𝑛1. 𝑛2. … . 𝑛n), since (𝜆(𝑛1, 𝛿(𝑛1. 𝑛2. … . 𝑛n))) =

(𝑛1).  Hence there exist a unique morphism 𝑥: 𝑁𝑥 × 𝑁𝑥 × …× 𝑁𝑥𝑁𝑥 × 𝑁𝑥 × …× 𝑁𝑥
×
𝑀
𝑁, given 

by 𝑥(𝑛1. 𝑛2. … . 𝑛n) = (𝜆(𝑛1, 𝛿(𝑛1. 𝑛2. … . 𝑛n)), 𝑛1) by the universal property of fiber product making 

the whole diagram commutative in T. 

Clearly 𝑥𝑜𝑥 = 𝐼 and 
𝑥
𝑜𝑥 = 𝐼. Hence 𝑥 is homeomorphism an then 𝜉𝑥: 𝑁𝑥 ×…×

𝑁𝑥   , 𝜉𝑥(𝑛1. 𝑛2. … . 𝑛n) =then 𝜉𝑥:𝑁𝑥 × 𝑁𝑥 × …× 𝑁𝑥   , 𝜉𝑥(𝑛1. 𝑛2. … . 𝑛n) =

𝜆(𝑛1, 𝛿(𝑛2. … . 𝑛n)), (𝑛1, 𝑛2, … , 𝑛n)𝑁𝑥 × 𝑁𝑥 × …× 𝑁𝑥  ,is proper map (Propositions(2,4)), since 

 𝑁𝑥 × 𝑁𝑥 × …× 𝑁𝑥
×
𝑀
𝑁 = (( ×…× )𝑥 × )

−1(𝑀) is closed subspace of 𝑁𝑥 × 𝑁𝑥 ×. . .× 𝑁. 

Proposition (2): 

Let 𝒮𝑖 be 𝑆𝐶𝒯 -space, 𝑖 = 1,2, … , 𝑛 then ⨁𝑖=1
𝑛 𝒮𝑖  is 𝑆𝐶𝒯 -space. 

Proof: 

Define ∶ ⨁𝑖=1
𝑛 𝒮𝑖 × 𝒯 → ⨁𝑖=1

𝑛 𝒮𝑖by((𝑢1⨁𝑢2⨁…⨁𝑢𝑛), 𝑟) =

(𝜋1(𝑢1, 𝑟)⨁𝜋2(𝑢2, 𝑟)⨁…⨁𝜋𝑛(𝑢, 𝑟)) for every (𝑢1⨁𝑢2⨁…⨁𝑢𝑛) ∈ ⨁𝑖=1
𝑛 𝒮𝑖 𝑎𝑛𝑑 𝑟 ∈ 𝒯, which is 

continuous . Where 𝜋𝑖 is a law of action of 𝒯 on 𝒮𝑖, 𝑖 = 1,2,… , 𝑛.      

Now if ((𝑢1⨁𝑢2⨁…⨁𝑢𝑛), 𝑟) = (𝑢1⨁𝑢2⨁…⨁𝑢𝑛) then 𝑟 = 𝑒 since 𝒮𝑖 is free  𝒯 -space, 𝑖 =

1,2,… , 𝑛. Hence ⨁𝑖=1
𝑛 𝒮𝑖  is free 𝒯 -space and the action groupoid ((⨁𝑖=1

𝑛 𝒮𝑖 ) × 𝒯,⨁𝑖=1
𝑛 𝒮𝑖 ) is SC-

groupoid since ⨁𝑖=1
𝑛 𝒮𝑖  is a Hausdorff (𝒮 1, 𝒮 2,…, 𝒮𝑛 are Hausdorff) and the source 

map:𝛼: (⨁𝑖=1
𝑛 𝒮𝑖)𝒯 ⨁𝑖=1

𝑛 𝒮𝑖;((𝑢1⨁𝑢2⨁…⨁𝑢𝑛), 𝑟) = ( 𝑢1⨁𝑢2⨁…⨁𝑢𝑛) =

(1 (𝑢1, 𝑟) ⨁2 (𝑢2, 𝑟)⨁…⨁𝛼𝑛(𝑢𝑛, 𝑟)) be proper by using a next commutative diagram into T: 

 
 

The map defined by: 𝑓:𝑓((𝑢1, 𝑟1) ⨁(𝑢2, 𝑟2) ⨁… , (𝑢n, 𝑟n))= ((𝑢1⨁𝑢2⨁…⨁𝑢𝑛), 𝑟𝑛) which is 

𝐶𝑥 

(𝛼1⨁𝛼2⨁… .⨁𝛼𝑛) 

(𝒮1⨁𝒮2⨁… .⨁𝒮𝑛) 
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surjective continuous since 

𝑓=(𝒮1× 𝒯)⨁(𝒮2× 𝒯)⨁…⨁(𝒮𝑛 × 𝒯)
≅
→
 
 (𝒮1⨁𝒮2⨁… .⨁𝒮𝑛)𝒯

𝑝𝑟1,2,3,…,𝑛
→      (𝒮1⨁𝒮2⨁… .⨁𝒮𝑛)𝒯        

 ((𝑢1, 𝑟1) ⨁(𝑢2, 𝑟2) ⨁…⨁(𝑢n, 𝑟n)) ⟶ ((𝑢1⨁𝑢2⨁… .⨁𝑢2), ( 𝑟1, 𝑟2… , 𝑟𝑛)) →

((𝑢1⨁𝑢2⨁… .⨁𝑢2), 𝑟n)Therefore (𝒮1⨁𝒮2⨁… .⨁𝒮𝑛) is 𝑆𝐶𝒯-space.  

Proposition (3): 

Let 𝒮𝑖 be 𝑆𝐶𝒯 -space, 𝑖 = 1,2, … , 𝑛  then ⨁𝑖=1
𝑛 𝒮𝑖 is 𝑆𝐶𝒯 -space and the collection of every orbits 𝑁 =

⨁𝑖=1
𝑛 𝒮𝑖/ 𝒯 is 𝑆𝐶 -groupoid of base 𝑀 = 𝒮𝑖/𝒯, 𝑖 = 1,2,… , 𝑛 with identification topology associated to 

the morphismhh   : ⨁𝑖=1
𝑛 𝒮𝑖⨁𝑖=1

𝑛 𝒮𝑖/𝒯, ( u1, u2, … , u𝑛 )=[( u1, u2, … , u𝑛 )].   

 Proof: 

Since⨁𝑖=1
𝑛 𝒮𝑖 is 𝑆𝐶𝒯 -space (Proposition(4,2)).By  : (⨁𝑖=1

𝑛 𝒮𝑖) 𝒯 ⨁𝑖=1
𝑛 𝒮𝑖 ,defined  by  

((u1⨁u2⨁… .⨁𝑢𝑛), 𝑟) = (𝜑( un, 𝑟))  where 𝜋𝑖 is the law of action of  𝒯 on 𝒮𝑖 , 𝑖 = 1,2,… , 𝑛.To show 

that (𝑁 = ⨁𝑖=1
𝑛 𝒮𝑖/𝒯,𝑀 =  𝒮𝑖/𝒯, 𝑖 = 1,2,… , 𝑛) is an 𝑆𝐶-groupoid.(1)(𝑁 = ⨁𝑖=1

𝑛 𝒮𝑖/𝒯,𝑀 = 𝒮𝑖/
𝒯, 𝑖 = 1,2,… , 𝑛) is 𝑇𝐺 since the functions 𝓌 and 𝛿 are continuous functions and 𝜆 is continuous  and 

then  is continuous  since the function ⨁𝑖=1
𝑛 𝜑𝑖: ⨁𝑖=1

𝑛 𝒮𝑖𝒮1/𝒯⨁𝒮2/𝒯⨁…⨁𝒮n/ 𝒯 is constant on the 

identification function's fibers, . Consequently, unique morphism exists ̀ =  ∶ 𝑁⨁𝑖=1
𝑛 𝑀𝑖  in T  If 

There is a commutative relationship in T in the following diagram:    

 

by way of the identification function 's universal property, so : 𝑁 = ⨁𝑖=1
𝑛 𝒮𝑖/ 𝒯

�̀�
→  ⨁𝑖=1

𝑛 𝑀𝑖
𝑃1
→𝑀1  

 
is 

continuous and 𝛽 is continuous, because  = 𝑜𝛿. (2) The base space 𝑀 = 𝒮𝑖/𝒯  , 𝑖 = 1,2, … , 𝑛    is a 

Hausdorff (Theorem (2,10)).(3)To prove the source function : ⨁𝑖=1
𝑛 𝒮𝑖/ 𝒯 𝒮𝑖/𝒯,𝑖 = 1,2,… , 𝑛,  

([(u1⨁u2⨁…⨁u𝑛 )]) = 𝜑𝑛(u𝑛) is proper. The map 𝒯
≅
→

 
{(u1⨁u2⨁…⨁u𝑛, u𝜊)} 𝒯

Ψ∗

→ (( u1⨁u2⨁…⨁u𝑛, u𝜊), 𝒯) is continuous and then all orbit  (( u1⨁
∘ …⨁ u𝑛

∘ ), 𝒯) is compact (𝒯 is 

compact) s.t *= } (u1⨁u2⨁…⨁u𝑛, u𝜊) ×  𝒯{ . But -fiber space, however 𝑁𝜑 (u𝜊) =  -1(𝜑(u𝜊)) 

is closed subspace of ( (u1⨁u2⨁…⨁u𝑛, u𝜊), 𝒯) since 𝒮i/ 𝒯, 𝑖 = 1,2,… , 𝑛  is Hausdorff (Theorem 

(2,10). Hence, -fiber space 𝑁𝜑(u𝜊)is compact for all u𝜊 𝒮i , 𝑖 = 1,2, … , 𝑛. Hence, a fibers of  be 

compact. To prove that the function  be closed,  the function  fu𝜊: 𝒮𝑖 𝑁
𝜑(u𝜊), 𝑖 = 1,2, … , 𝑛   

defined by fu𝜊(u1⨁u2⨁…⨁u𝑛) = [( u𝜊, u1⨁u2⨁…⨁u𝑛  ) ] is homeomorphism. Thus 𝒮1, 𝒮2,…, 𝒮n 

are compact (𝑁𝜑(u𝜊)are compact) and then 𝒮i/ 𝒯 is compact, 𝑖 = 1,2, . . , 𝑛. Consider the commutative 

diagram that follows in T:  

𝜂 
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where the  , ⨁𝑖=1
𝑛 𝜑𝑖  will be closed (Proposition (2,4)) 𝑃𝑟𝑛 is closed. Thus, the function  is closed. 

Thus, the function  is proper and then (⨁𝑖=1
𝑛 𝒮𝑖/ 𝒯, 𝒮n/ 𝒯) is an 𝑆𝐶-groupoid. 

Proposition (4):  
If (𝑁,𝑀) be an 𝑆𝐶-groupoid then the -fiber spaces ⊕𝑖=1

𝑛 𝑁𝑥𝑖 and ⨁𝑗=1
𝑛 𝑁𝑦𝑗 are isomorphic group 

spaces for any any 𝑛 𝑦 𝑁𝑥 . 

Proof: 

⨁ 𝑖=1
𝑛 𝑁𝑥𝑖 is  𝑆𝐶𝑥𝑁𝑥-space  and ⨁  𝑗=1

𝑛 𝑁𝑦𝑗 is   𝑆𝐶𝑦𝑁𝑦-space ⨁ 𝑖=1
𝑛  𝑁𝑥𝑖 (Proposition (3,8)). 

Homeomorphic to ⨁  𝑗=1
𝑛   𝑁𝑦𝑗 by 𝑅𝛿(𝑛1 ,𝑛2…,𝑛𝑛):𝑁𝑥1⨁𝑁𝑥2⨁ …⨁𝑁𝑥3 

𝑁𝑦1⨁𝑁𝑦2⨁…⨁𝑁𝑦𝑛  

𝑅𝛿(𝑛1 ,𝑛2…,𝑛𝑛)(ℎ1⨁ ℎ2⨁…⨁ ℎ𝑛) = 𝜆(𝑛1,𝑛2,…,𝑛𝑛, 𝜆(ℎ1⨁ ℎ2⨁…⨁ ℎ𝑛, 𝛿(𝑛1,𝑛2,…,, 

𝑛𝑛))), vertex group  𝑥 𝑁𝑥  isomorphic to the vertex group  𝑦 𝑁𝑦  using inner automorphism  

𝐼𝑛(𝑛1 ,𝑛2…,𝑛𝑛)(ℎ1⨁ ℎ2⨁…⨁ ℎ𝑛) = 𝜆(𝑛1 , 𝑛2… , 𝑛𝑛, 𝜆(ℎ1⨁ ℎ2⨁…⨁ ℎ𝑛, 𝛿(𝑛1,𝑛2,…,, 𝑛𝑛))) and the 

next diagram be commutative into T:  

 

Where 𝜆1=𝜆|𝑁𝑥1⨁𝑁𝑥2⨁…⨁𝑁𝑥𝑛×𝑥𝑁𝑥    

and𝜆2 = 𝜆|𝑁𝑦1⨁𝑁𝑦2⨁..⨁𝑁𝑦𝑛×𝑦𝑁𝑦.  

Hence the pair  

(Rδ(𝑛1,𝑛2,…,𝑛n)
, 𝐼𝑛(𝑛1,𝑛2,…,𝑛n)

) represent an isomorphism of group spaces. 

Proposition (5): 

Suppose 𝒮1⨁𝒮2  is the 𝑆𝐶𝒯  -space , 𝒮1́⨁𝒮2́  is the equivarient space for 𝒮1⨁𝒮2 , let 𝒮1
"⨁𝒮2

"  is a 

Hausdorff space and 𝔯2: 𝒮1
"⨁𝒮2

" → 𝒮1
′⨁𝒮2

′  is continuous function then (𝒮1
"⨁𝒮2

") ×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2) is the 

fiber product of equivarient function 𝔯1 and 𝔯2 over 𝒮1
′⨁𝒮2

′ .    

𝑁𝑦1⨁𝑁𝑦2⨁…⨁𝑁𝑦𝑛 
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Proof:  

Let  𝜋′(𝒮1
”⨁𝒮2

”)
 

×
𝒮1́⨁𝒮2́

(𝒮1⨁𝒮2)) × 𝒯 

 (𝒮1
"⨁𝒮2

") ×
𝒮1́⨁𝒮2́

(𝒮1⨁𝒮2 )by 

 𝜋′((u1
" , u2

" ), (u1, u2), 𝑎)=((u1
" , u2

" ), 𝜋 ((u1, u2), 𝑎)) where 𝜋 be a law action for 𝒯 onto 𝒮1⨁𝒮2.  𝜋′be 

the continuous action for 𝒯 onto  (𝒮1
"⨁𝒮2

")
 
×

𝒮1
′⨁𝒮2

′(𝒮1⨁𝒮2),  

(1)𝜋′((𝑢1
”⨁𝑢2

” ),(𝑢1⨁𝑢2),e)=(𝑢1
”⨁𝑢2

”  ,  

𝜋(𝑢1⨁𝑢2,e))=((𝑢1
"⨁𝑢2

" ),(𝑢1⨁𝑢2)),since 𝜋 ((𝑢1⨁𝑢2), 𝑒) = (𝑢1⨁𝑢2)  for 

every   ((𝑢1
"⨁𝑢2

" ), (𝑢1⨁𝑢2)) ∈  (𝑢1
"⨁𝑢2

" ) ×
𝒮1
′×𝒮2

′ (𝑢1⨁𝑢2). (2)  𝜋′ 

((𝑢1
"⨁𝑢2

" ), (𝑢1⨁𝑢2)),(𝑟1, 𝑟1))=( (𝑢1
"⨁𝑢2

" ),𝜋( (𝑢1⨁𝑢2),𝜆(𝑟1, 𝑟1))= 

( (𝑢1
"⨁𝑢2

" ) , 𝜋 (𝜋 ( (𝑢1⨁𝑢2) ,𝑟1), 𝑟2)=  𝜋′ ( 𝜋′ (( (𝑢1
"⨁𝑢2

" ),(𝑢1⨁𝑢2) , 𝑟1), 𝑟2), where 𝜆 is law of 

composition.(3) If  𝜋′ (((𝑢1
"⨁𝑢2

" ),(𝑢1⨁𝑢2)),r1)=( (𝑢1
"⨁𝑢2

" ),(𝑢1⨁𝑢2)) 𝜋 ((𝑢1⨁𝑢2),r)= (𝑢1⨁𝑢2)   

r=e, since 𝒮1⨁𝒮2  is free 𝒯-space. (4) Consider the following diagram: 

 

 

In which 𝑟1 ∘ 𝜋 ∘ (𝑃2 × 𝑖𝑑𝒯)((𝑢1
”⨁𝑢2

” ), (𝑢1⨁𝑢2), 𝑟)  

= 𝑟2 ∘ 𝑃1((𝑢1
"⨁𝑢2

" ), (𝑢1⨁𝑢2), 𝑟). Hence there exist a unique morphism  =  𝜋′ ∶

((𝒮1
"⨁𝒮2

")
 

×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2))  𝒯 (𝒮1
"⨁𝒮2

")
 

×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2) given by  𝜋′((𝑢1
"⨁𝑢2

" ), (𝑢1⨁𝑢2), 𝑟)  =

((𝑢1
"⨁𝑢2

" ), 

𝜋( (𝒮1⨁𝒮2), 𝑟)) making a whole diagram commutative into T by an  universal property for fiber 

product. Hence (𝒮1
"⨁𝒮2

")
 

×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2) is free 𝒯-space. To show that action groupoid  

(((𝒮1
"⨁𝒮2

")
 

×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2)  × 𝒯, (𝒮1
"⨁𝒮2

")
 

×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2) ) is SC-groupoid. (𝒮1
"⨁𝒮2

")  is Hausdorff 

space and (𝒮1⨁𝒮2) is Hausdorff space (Definition (3,4)). Hence  (𝒮1
"⨁𝒮2

") ×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2) is Hausdorff 
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space (subspace of Hausdorff (𝒮1
"⨁𝒮2

") ×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2).The fibers 𝛼−1(𝑢1⨁𝑢2) = { (𝑢1⨁𝑢2)}𝒯 of a 

source function for the action groupoid ((𝒮1⨁𝒮2) 𝒯(𝒮1⨁𝒮2)) are compact since (𝒮1⨁𝒮2) is 𝑆𝐶𝒯-

space, but {(𝑢1⨁𝑢2)}𝒯 𝒯 hence a source function for an action groupoid 

(𝒮1
"⨁𝒮2

")
 

×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2) × 𝒯,(𝒮1
"⨁𝒮2

")
 

×
𝒮1
′⨁𝒮2

′ (𝒮1⨁𝒮2)) is proper.(Proposition (2,4)). 

Proposition (6): 

Let (𝑁,𝑀) be an SSC-groupoid then 𝑁𝑥1⨁ 𝑁𝑥2 is 𝑆𝑆𝐶𝑥𝑁𝑥 -space, for all  𝑥𝑀. 

Proof: 

𝑁𝑥1  and 𝑁𝑥2 are 𝑆𝐶𝑥𝑁𝑥-space, (Proposition (3,8)). 

𝐺𝑥1⨁𝐺𝑥2  is 𝑆𝐶𝑥𝑁𝑥-space, (Proposition (4,2)).  

To show that the function  𝜑𝑥 ∶  𝑁𝑥1⨁𝑁𝑥2𝑁𝑥1⨁𝑁𝑥2/ xNx is submersion, for every 𝑥𝑀.The maps 

𝜑x1 ∗ 𝜑𝑥2: 𝑁𝑥1⨁𝑁𝑥2𝑁𝑥1⨁𝑁𝑥2/ xNx and 𝛽𝑥 ∶  𝑁𝑥1⨁𝑁𝑥2𝑀1⨁𝑀2are both identification function 

(𝛽𝑥 is surjective proper function,( Proposition (3,2))and Proposition (2,4))) and constant on each other's 

fibres. The dotted arrows in the figure below:  

 

existing, are unique into T by universal property for identification , a function x be provided by 

𝜂𝑥(𝜑x1⨁𝜑𝑥2(𝑛1, 𝑛2)) =  𝛽𝑥  (𝑛1, 𝑛2). Now, to show that the function 

𝜑x1⨁𝜑𝑥2: Nx1⨁Nx2Nx1⨁Nx2/ xNx is submersion. unique in T.  

Let(𝑛1⨁ 𝑛2) Nx1⨁Nx2, 𝜑x1⨁𝜑𝑥2  (𝑛1⨁ 𝑛2) Nx1⨁Nx2/ xNx, 𝜂𝑥 (𝜑x1⨁𝜑𝑥2(𝑛1⨁ 𝑛2)) =   

𝛽𝑥(𝑛1, 𝑛2) 𝑀1⨁𝑀2 then there is an open neighborhood 𝑈(𝑛1,𝑛2) of 𝛽𝑥(𝑛1, 𝑛2) in 𝑀1⨁𝑀2 and 

continuous right  inverse : 𝑈Nx1⨁Nx2   to 𝛽𝑥: Nx1⨁Nx2𝑀1⨁𝑀2 such that 𝑜𝛽𝑥  (𝑛1⨁ 𝑛2) =

( 𝑛1⨁ 𝑛2) , (𝛽𝑥 is submersion (𝑁,𝑀) is 𝑆𝑆𝐶-groupiod). 

Now define 𝑣′(𝑛1⨁𝑛2):𝑥
−1(U(𝑛1⨁𝑛2))

𝜂𝑥
→  U(𝑛1⨁𝑛2)  

𝜈
→  Nx1⨁Nx2 by 𝑣′(𝑛1⨁𝑛2)(𝑎)  = 𝑜𝑥(𝑎) where  
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𝑥
−1(U(𝑛1⨁𝑛2)) is open  neighborhood of 𝜑x1⨁𝜑𝑥2 (𝑛1⨁𝑛2) in Nx1⨁ Nx2/ xNx. 𝑣′(𝑛1⨁𝑛2) is continuous 

and (𝜑x1⨁𝜑𝑥2)𝜊𝑣′(𝑛1⨁𝑛2))(𝑎) =  (𝜑x1⨁𝜑𝑥2)ooη𝑥(𝑎) = −1𝜊𝜂𝑥𝜊((𝜑x1⨁𝜑𝑥2) 𝑜𝑜𝜂𝑥(𝑎) =

𝑥
−1𝑜𝛽𝑥𝑜𝑜(𝜑x1⨁𝜑𝑥2) (𝑎) = 𝑥

−1𝑜𝜂𝑥(𝑎) = 𝑎   

And 𝑣′(𝑛1⨁𝑛2)(𝜑x1⨁𝜑𝑥2)(𝑛1⨁𝑛2)) = 𝑜𝜂𝑥(𝜑𝑥1⨁𝜑𝑥2(𝑛1⨁𝑛2)) = 𝑜𝛽𝑥(𝑛1⨁𝑛2) =  𝑛.   

Proposition (7):  

Let (𝑁1 × 𝑁2 × …× 𝑁𝑛, 𝑀1 ×𝑀2 × …×𝑀𝑛) be transitive 𝑆𝐶 -groupoid then Ehressmann groupoid 

(𝑁𝑥𝑁𝑥…𝑁𝑥/xNx, 𝑁𝑥/xNx) isomorphic to (𝑁1 × 𝑁2 × …× 𝑁𝑛, 𝑀1 ×𝑀2 × …×𝑀𝑛) in 𝑻𝑮.  

Proof:  

 The function 𝜉x: 𝑁𝑥𝑁𝑥…𝑁𝑥  𝑁1 × 𝑁2 ×…× 𝑁𝑛 is surjective proper (Definition (3,3)). Next, the 

functions 𝜉x: 𝑁𝑥𝑁𝑥…𝑁𝑥   𝑁1 × 𝑁2 × …× 𝑁𝑛and 𝜂𝑥: 𝑁𝑥𝑁𝑥…𝑁𝑥    𝑁𝑥𝑁𝑥…𝑁𝑥 /x𝑁x are 

both constants on the fiber of each other and identification functions. Hence, in the following figure, 

the dotted arrows:  

 

exist single into T by a universal property for identification function ,a function 𝔯  be given 

by 𝔯([(𝑛1, 𝑛2… , , 𝑛n)])=𝜆(𝑛1,𝛿(𝑛2… , 𝑛n)) has to become homeomorphism. (𝔯,𝜂𝑥) is the isomorphism 

for TG where 𝜂𝑥 is the function presented by 𝜂𝑥(𝜑x(𝑛1, 𝑛2… , , 𝑛n))=𝛽𝑥(𝑛1, 𝑛2… , , 𝑛n) where 

𝜑x:𝑁x × 𝑁x ×…×𝑁x   𝑁x× 𝑁𝑋 × …× 𝑁𝑋/x𝑁x .  (Proposition (4,6)).  

Proposition (8): 

 Let 𝒮1⨁𝒮2  be an 𝑆𝑆𝐶𝒯 -space then Ehresmann groupoid ((𝒮1⨁𝒮2) × (𝒮1⨁𝒮2)/𝒯, (𝒮1⨁𝒮2)/𝒯) is 

submersive groupoid. 

Proof:  

Let 𝑁 =((𝒮1⨁𝒮2) × (𝒮1⨁𝒮2))/𝒯, M=(𝒮1⨁𝒮2)/𝒯, (𝑁,𝑀) be  an transitive SC-groupoid (Proposition 

← n.time→ ← n.time→ 

← n.time→ 
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(4,3)) into prove that the function 𝛽𝑥 : 𝑁𝒳⊕𝑁𝒳 M be a submersion. If ℎ =[( 𝑢⨁ �̀� ), 

(�̀̀�⨁�̀̀̀�)] 𝑁𝒳⨁𝑁𝒳, then 

 𝛽𝑥  (ℎ) =  𝜑  (𝑢⨁𝑢′) and there exists an open neighborhood 𝑉  of 𝜑  (u⨁u')  in 𝑀  as well as a 

continuous right inverse.  ∗: 𝑉𝒮1⨁𝒮2  to 𝜑   s.t  ∗∘ 𝜑 (u⨁ u'))=( 𝑢⨁𝑢′ ) (𝜑 : 𝒮1⨁𝒮2𝑀 =

(𝒮1⨁𝒮2  )/𝒯  is submersion, (Definition (3,11)). Define  ∗∗∶ 𝑉𝑁𝑥  by:  ∗∗ (𝑦)  = [( ∗ (𝑦) , 

(�̀̀�⨁�̀̀̀�)]  for every 𝑦 𝑉. 𝛽𝑥o ∗∗   (𝑦) = 𝛽𝑥  ([( ∗ (𝑦), (𝑢⨁ �̀�)]) = 𝜑 𝑜 ∗ (𝑦)  =  𝑦 = 𝐼𝑉  for every  

𝑦𝑉   and  ∗∗  (𝑦)o𝛽𝑥  (ℎ ) = ∗∗ ( [(𝑢⨁  𝑢′) , (�̀̀�⨁�̀̀̀�) ]) =  ∗∗ (  𝜑 ( u⨁  u')) = [( ∗ (𝜑  (𝑢⨁ 

𝑢′), (�̀̀�⨁�̀̀̀�))] = [(𝑢⨁ 𝑢′), (�̀̀�⨁�̀̀̀�)] = ℎ   

Proposition (9): 

Let (𝑁,𝑀) be 𝑆𝑆𝐶-groupoid then Ehresmann groupoid ((𝑁x𝑁x…𝑁x /x𝑁x  , 𝑁x /x𝑁x)  is SSC-

groupoid for every 𝑥𝑀. 

Proof: 

If 𝑁 = 𝑁x𝑁x…𝑁x/x𝑁x, 𝑀 = 𝑁x/x𝑁x, (𝑁,𝑀) be an transitive SC-groupoid (Proposition (4,3)) to 

display that a function 𝛽𝑋:𝑁x 𝑀 be submersion. If ℎ=[( 𝑢1, 𝑢2, … , 𝑢𝑛)]𝑁x, then 𝛽𝑋 (ℎ)= 𝜑(𝑢1) , 

there exists the open neighborhood V of 𝜑 (𝑢1) in 𝑀 and continuous right inverse  ∗: 𝑉𝑁x into 𝜑   

s.t  ∗ 𝑜 𝜑 (𝑢) =𝑢 (𝜑:𝑁𝑥 𝑀 = 𝑁𝑥/x𝑁𝑥 is submersion, (Definition (2,8)). Define  :UNx by: 

(y)=[(*(y),u`)] for every yU .Define ** :V𝑁𝑥 by:  ∗∗ (𝑦)=[( ∗(𝑦), (𝑢2, … , 𝑢𝑛))] for every 𝑦𝑉. 

𝛽𝑥o ∗∗ (𝑦) = 𝛽𝑋 ([( ∗ (𝑦), 𝑢1))]) = 𝜑 o ∗ (𝑦) = 𝑦 = 𝐼𝑉 for every  𝑦𝑉  and      ∗∗ (𝑦)𝑜𝛽𝑋 (ℎ)= 

 ∗∗ ([(𝑢1, 𝑢2, … , 𝑢𝑛 )])=  ∗∗ ( 𝜑 (𝑢1))=[( ∗ ( 𝜑 (𝑢1), 𝑢2, … , 𝑢𝑛))]=[( 𝑢1, 𝑢2, … , 𝑢𝑛)]= ℎ . 

5. Conclusion:  

We have studied topological groupoid. we also studied privately type of topological groupoid which is 

SC-groupoid, SSC-groupoid, SC 𝒯-space and  SSC 𝒯 -space  and the  relationships among them written 

as proposition.  
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