https://dbdxxb.cn/

Original Research Paper

ON CERTAIN TYPES OF GROUPOIDS AND TOPOLOGICAL GROUPOID

ISSN: 1005-3026

A. Seemaa Ali¹, B. Taghreed Majeed²

¹Mathematics Department- College of Education, Mustansiriyah University.
²Mathematics Department- College of Education, Mustansiriyah University.
¹*Corresponding author:seemaamohammed2@gmail.com
²E-mail addresses:taghreedmajeed@uomustansiriyah.edu.iq

Abstract:

Volume 26 Issue 01, 2023

In this work, we introduce new kinds of topological groupoid which are source proper groupoid , submersive groupoid , and use them to construct a new kind of groupoid space which are source proper group space and submersive group space . The main objective of this paper is to find new relationships between these types written as proposition and can be used in the field of algebraic topology.

Keywords: groupoid, topological space, topological groupoid, source proper groupoid.

1. Introduction:

The main objective of this research is to study certain types of topological groupoid, which is source proper groupoid, denoted by (SC-groupoid), submersive groupoid, denoted by (SSC-groupoid), source proper group-space , denoted by (SC \mathcal{T} -space) and submersive group-space denoted by (SSC \mathcal{T} -space) and also some properties of these groupoids are studied. The category C contain for:(i) The class for objects. (ii) If $r \in morphism(S, L)$ with domain S and range L, we write $r: S \to L$ for all arranged pair of things S and L. (iii) A function that associates two morphisms $r: S \to L$ and $r_1: L \to H$ their composite $r_1 or : S \to H$ for all ordered triple of objects S, L, and H. This satisfies the following axioms:(1) The associative axiom: let $\mathbf{r}: S \to L, \mathbf{r}_1: L \to H$, $\mathbf{r}_2: H \to K$ then $\mathbf{r}_2(\mathbf{r}_1\mathbf{r}) = (\mathbf{r}_2 \mathbf{r}_1)\mathbf{r}$. (2) the identity axiom of all objects L there is the morphism $I_L: L \to L$ where let $\mathbf{r}: S \to L$, implies $I_L \mathbf{r} = \mathbf{r}$, and if $\mathbf{r}_1: L \to H$, then $r_1 I_L = r_1 [5]$. The category of continuous maps and topological spaces that is denoted by T[3]. A groupoid be the pair of sets (N,M) where be get: (1) onto functions $\alpha: N \to M$, $\beta: N \to M$ they are called respectively, a source function, a target function. (2) one-to-one function $w: M \rightarrow W$ N known as the object inclusion with $\alpha ow = I_M$, $\beta ow = I_M$ where $I_M : M \to M$.(3) A partial composition λ in N. A compositional rule for the set N * N is defined as $N * N = \{(n_1, n_2) \in N \times \}$ $N|\alpha$ $(n_1)=\beta(n_2)$ "fiber product of β and α over M" s.t :(i) $\lambda(n,\lambda(n_1,n_2)) =$ $\lambda(\lambda(n_1, n_2), n_2), \forall (n, n_1), (n_1, n_2) \in N * N.(ii) \alpha (\lambda (n_1, n_2)) = \alpha (n_2), \beta(\lambda (n_1, n_2)) = \beta(n_1)$ for each $(n_1, n_2) \in N * N$.

(iii) $\lambda(n_1, w(\alpha(n_1))) = n_1$ and $\lambda(w(\beta(n_1)), n_1) = n_1$, for all $n_1 \in N$. (4) A bijection $\delta: N \to N$ known as the inversion of N satisfying: $(a)\alpha(\delta(n_1)) = \beta(n_1), \beta(\delta(n_1)) = \alpha(n_1))$, for all $n_1 \in N$. $(b)\lambda(\delta(n_1), n_1) = w(\alpha(n_1)), \lambda(n_1, \delta(n_1)) = w(\beta(n_1))$, for all $n_1 \in N$. We they note $\delta(n_1) = (n_1)^{-1}$, known an inverse for element $n_1 \in N$, w(x) = x known a unit for element on N associated into an element $x \in M$. We will take notes $(n_1, n_2) = n_1 n_2$. We say that N is a groupoid on M or N is known a groupoid M be known of base. We call say this is *N* be the groupoid in *M* [7].see[8] For every $s \in S$, $\prod_{s \in S} xs \xrightarrow{Ps} xs$ such that Ps(x) = xs, for ever $s \in \prod_{s \in S} xs$, *Ps* is called the projection map[7]. The morphism for groupoids be the pair for function $(\mu, \mu_0): (N, M) \rightarrow (\hat{N}, \hat{M})$ where $\hat{\alpha} \circ \mu = \mu_0 \circ \alpha$, $\hat{\beta} \circ \mu = \mu_0 \circ \beta$, $\mu(\lambda(n, \hat{n})) = \hat{\lambda}(\mu(n), \mu(\hat{n}))$ for all $(n, \hat{n}) \in N * N$ [3]

If $(\mu, \mu_0): (N, M) \rightarrow (\hat{N}, \hat{M})$ is the morphism for groupoids implies a kernal of μ be a set ker $\mu = \{n \in N \mid \mu(n) \in \hat{w}(\hat{M})\}[2].$

2. On Topological groupoid: Definition(1):[1]Suppose $r: S \to H$, $r_1: L \to H$ is continuous maps, when *S*, *L* and *H* be topological spaces. Then the fiber product of r and r_1 is $S_H^{\times}L = \{(s, l): r(s) = r_1(l)\}$ which is a sub space of $S_H^{\times}L$. i.e, the next diagram :

 $\mathbf{r}_1 = \mathbf{pr}_1 |_{S_{HL}^{\times L}}, \mathbf{r} = \mathbf{pr}_2 |_{S_{HL}^{\times L}}$, and T the category of topological spaces and continuous maps. The shape (1) result an universal property , i.e., let K denotes any topological space. and $\mathbf{r}_2: K \to S, \mathbf{r}_2: K \to L$ both continuous functions in T s.t $\mathbf{r} \circ \mathbf{r}_2 = \mathbf{r}_1 \circ \mathbf{r}_2$ then there exist a unique continuous function $\theta: K \to S \times L$ making the following diagram:

The definition of the function θ is $\theta(b) = (\mathbf{r}_2(b), \mathbf{r}_2(b))$ for every $b \in K$. In(1), if r is injective or surjective map so is $\mathbf{\dot{r}}$ and the same thing applies to \mathbf{r}_1 and \mathbf{r}_1 .

Definition (2):[2]

Suppose S, L is topological space Then $r: S \to L$ be call proper, let a function $r \times I_H : S \times H \to L \times H$ is closed for all topological space H and r is continuous.

Proposition (3):[4]

Let $r: S \to L$ be continuous injective function then r is proper function if and only if r is closed function and r is homeomorphism of S on to a closed subspace of L.

Proposition (4):[2]

If we define a proper function $r: S \to L$, implies a restriction for r into closed of subset *B* for *S* be the proper function of *B* into *L*.

Remark (5):[3]

If (N, M) is any groupoid, then:

(1) The subset of *N* denoted by $N_x = \alpha^{-1}(x)$ is known as the α -fiber at $x \in M$.

(2) The subset of *N* denoted by $_{y}N = \beta^{-1}(y)$ is called the β -fiber at $\in M$.

(3) $_{y}N_{x} = N_{x} \cap _{y}N$ a set for elements in N s.t have y as a target and

x as a source

(4) The function $\tau: N \to M \times M$; $\tau(n) = (\beta(n), \alpha(n))$ is known as the transitor of N and $_yN_x = \tau^{-1}(y, x)$, for every $x, y \in M$.

Definition (6):[2]

The topological group spaces be the set \mathcal{T} containing structures:

(1) ${\mathcal T}$ be the topological space .

(2) \mathcal{T} is a group.

The inversion law $\nu: \mathcal{T} \to \mathcal{T}$ and the composition law $\gamma: \mathcal{T} \times \mathcal{T} \to \mathcal{T}$ are both continuous.

Definition (7):[2]

If S is a topological space, \mathcal{T} is the topological group. The left action for \mathcal{T} into S be the continuous function $\pi: \mathcal{T} \times S \to S$ with the following properties:

(1) $\pi(e, u) = u$, for all $u \in S$ where *e* is the element of identity in \mathcal{T} .

(2) $\pi(a, \pi(h, u)) = \pi(\gamma(a, h), u), \forall u \in S$, where γ is the law of composition of \mathcal{T} .

The action π and the space S is known as group space and indicated by T -space more specifically (left T - space).

Definition (8):[4]

If \mathcal{S} be a \mathcal{T} -space then:

(1)The orbit of $u \in S$ is defined as $orb(u) = \pi(u, \mathcal{T}) = \{\pi(u, a) : a \in \mathcal{T}\}$ and the collection of S orbits is known to as orbit space and represented by S/\mathcal{T} .

(2) The stabilizer of $u \in S$ is the set of

(2) The stabilizer of $u \in S$ is the set of elements in T that fix u. $stab(u) = T_u = \{a \in T | \pi(a, u) = u\}$.

(3) S is free T-space if the action of T on S is free.

Definition (9):[6]

Let S be a T -space. An action π of T on S is said to be:

- (1) Transitive if orb(u) = S for all $\in S$.
- (2) Trivial if ker = \mathcal{T} .
- (3) Free if the stabilizer of every element is trivial, i.e. $stab(u) = \{e\}$, for all $u \in S$.

Theorem (10):[1]

If S is Hausdorff space and S be T -space with T compact and then:

(1) $\mathcal{S} / \mathcal{T}$ is Hausdorff.

(2) The law of action $\pi: S \times T \to S$ is a closed map.

(3) $\mathcal S \ / \ \mathcal T$ is compact if and only if $\mathcal S$ is compact

(4) The map $\varphi: S \to S / T$ is proper.

Definition (11):[6]

The topological groupoid be the groupoid (N, M) with topologies onto M s.t a functions $\beta: N \to M$, $\alpha: N \to M$, $w: M \to N$, $\lambda: N * N \to N$ and $\delta: N \to N$ are continuous functions where N * N has the $N \times N$ subspace topology. A topological groupoid is denoted by TG.

Definition (12):[3]

A morphism of TG is morphism of groupoids $(f_1, f_2): (N, M) \to (N_1, M_1)$ such that f_1 and f_2 are continuous.

3. *SC*-groupoid , *SSC*-groupoid , *SC T* -space , *SSC T* -space Definition (1):[1]

TG known as the source proper groupoid ((*SC*-groupoid)) if:

- (1) The base space M is a Hausdorff.
- (2) The map $\alpha : N \rightarrow M$ is a proper.

Proposition (2):[1]

If (N, M) be an *SC*-groupoid then the functions $w: M \to N$, $\beta: N \to M$ and $w: M \to N$ are proper.

Definition (3):

If (N, M) be an *SC*-groupoid then the function $\xi_x: N_x \times N_x \times N_x \to N$, is defined as $\xi_x(n_1, n_2, n_3) = \lambda(n_1, \delta(n_2, n_3))$ is proper map, for every $x \in M$.

Definition (4):[1]

A \mathcal{T} -space \mathcal{S} is referred to as source proper group space ((SCT -space)) if:

(1) S is free T-space

(2) The action groupoid ($\mathcal{S} \times \mathcal{T}, \mathcal{S}$) is *SC*-groupoid.

Definition (5):[4]

Let $(f_1, \dot{f}_1): (N_1, M_1) \to (\dot{N}_1, \dot{M}_1)$ and $(\xi_2, \dot{\xi}_2): (N_2, M_2) \to (\dot{N}_2, \dot{M}_2)$ each are proper functions, implies a direct sum $(\xi_1 \oplus \xi_2, \dot{\xi}_1 \oplus \dot{\xi}_2): (N_1 \oplus N_2, M_1 \oplus M_2) \to (\dot{N}_1 \oplus \dot{N}_2, \dot{M}_1 \oplus \dot{M}_2)$ be proper functions.

Proposition (6):[2]

Let $\mathcal{T}(\mathcal{S}, \varphi, M)$ is the cartan principal bundle implies $\mathcal{S} \times \mathcal{S} / \mathcal{T}$ be the *TG* of base *M*. A pair ($\mathcal{S} \times \mathcal{S} / \mathcal{T}, M$) is known as the Ehresmann groupoid.

Proposition (7):[4]

The function $\xi^*: \mathcal{S}_M^{\times} \mathcal{S} \to \mathcal{T}$ is continuous if \mathcal{S} be $SC \mathcal{T}$ -space.

Proposition (8):[4]

If (N, M) be an SC-groupoid then the α -fiber space N_x is SC_xN_x -space, for all $x \in M$.

Definition (9) :

A transitive *SC*-groupoid (*N*, *M*) is known as submersive groupoid (*SSC*-groupoid), when the function $\beta_x: N_x \times N_x \to M$ is submersion for every $x \in M$.

Example (10):

Every compact transitive *TG* on discrete space *M* is *SSC*-groupoid. Since for all $n \in N_x$ then $U = \{\beta_x (n_1, n_2)\}$ is a neighborhood that is open in *M*. $\beta_x (n_1, n_2)$ and the constant map $v: U \rightarrow N_x$, $v(\beta_x(n_1, n_2)) = n_1 n_2$ is continuous right inverse to $\beta_x: N_x \times N_x \rightarrow M$

Definition (11):[1]

An *SCT* -space S is called submersive group space "*SSCT* -space" if the map $\varphi: S \to S/T$ is submersion.

4. The results of SC-groupoid and SSC-groupoid

Proposition (1):

If (N, M) be an SC-groupoid then the function $\xi_x: N_x \times N_x \times ... \times N_x \to N$, defined by $(n_1, n_2, ..., n_n) = \lambda(n_1, \delta(n_2, ..., n_n))$ is proper map, for every $x \in M$. **Proof:**

Consider the following diagram:

In which $C_x o P_{r1}(n,h) = C_x o \lambda o \theta o(I \times \delta)(n,h)$ where C_x is the constant function, θ be the permutation function and, w(x) be identity element in ${}_xN_x$ and $N_x \times N_x \times ... \times N_x \times_M N$ is the fiber product of β_x

and β over *M*. Hence there exists a unique morphism

$$\psi_{x}: N_{x} \times N_{x} \times \dots \times N_{x} \times M_{x} \times M_{x} \times N_{x} \times \dots \times N_{x} \text{ is given by } \psi_{x}(n_{1}, n_{2}, \dots, n_{n}) =$$

 $(\lambda(\delta(n_1), n_2), ..., n_n)$ by the universal property of fiber product making **T** commutative over

the whole diagram. Now, consider the following diagram:

 $(\alpha_1 \oplus \alpha_2 \oplus \dots \oplus \alpha_n)$

In which $\beta o \lambda o(I \times \delta)(n_1, n_2, ..., n_n) = \beta x o P r_1(n_1, n_2, ..., n_n)$, since $\beta(\lambda(n_1, \delta(n_1, n_2, ..., n_n))) = \beta(n_1)$. Hence there exist a unique morphism $\theta_x : N_x \times N_x \times ... \times N_x \to N_x \times N_x \times ... \times N_x \stackrel{\times}{\to} N_x \stackrel{\times}{\to} N_x \times ... \times N_x \stackrel{\times}{\to} N_x \times ... \times N_x \stackrel{\times}{\to} N_x \stackrel{\times}{\to} N_x \times ... \times N_x$

Clearly $\theta_x o \psi_x = I$ and $\psi_x o \theta_x = I$. Hence θ_x is homeomorphism an then $\xi_x : N_x \times ... \times N_x$, $\xi_x(n_1.n_2....n_n)$ = then $\xi_x : N_x \times N_x \times ... \times N_x$, $\xi_x(n_1.n_2....n_n) =$

 $\lambda(n_1, \delta(n_2, \dots, n_n)), \forall (n_1, n_2, \dots, n_n) \in N_x \times N_x \times \dots \times N_x \text{, is proper map (Propositions(2,4)), since}$ $N_x \times N_x \times \dots \times N_x \stackrel{\times}{}_M N = ((\beta \times \dots \times \beta)_x \times \beta)^{-1} (\Delta M) \text{ is closed subspace of } N_x \times N_x \times \dots \times N.$

Proposition (2):

Let \mathcal{S}_i be $SC\mathcal{T}$ -space, i = 1, 2, ..., n then $\bigoplus_{i=1}^n \mathcal{S}_i$ is $SC\mathcal{T}$ -space. **Proof:** Define $\psi : \bigoplus_{i=1}^n \mathcal{S}_i \times \mathcal{T} \to \bigoplus_{i=1}^n \mathcal{S}_i$ by $\psi((u_1 \oplus u_2 \oplus ... \oplus u_n), r) =$ $(\pi_1(u_1, r) \oplus \pi_2(u_2, r) \oplus ... \oplus \pi_n(u, r))$ for every $(u_1 \oplus u_2 \oplus ... \oplus u_n) \in \bigoplus_{i=1}^n \mathcal{S}_i$ and $r \in \mathcal{T}$, which is continuous. Where π_i is a law of action of \mathcal{T} on $\mathcal{S}_i, i = 1, 2, ..., n$.

Now if $\psi((u_1 \oplus u_2 \oplus ... \oplus u_n), r) = (u_1 \oplus u_2 \oplus ... \oplus u_n)$ then r = e since S_i is free \mathcal{T} -space, i = 1, 2, ..., n. Hence $\bigoplus_{i=1}^n S_i$ is free \mathcal{T} -space and the action groupoid $((\bigoplus_{i=1}^n S_i) \times \mathcal{T}, \bigoplus_{i=1}^n S_i)$ is SC-groupoid since $\bigoplus_{i=1}^n S_i$ is a Hausdorff $(S_1, S_2, ..., S_n)$ are Hausdorff and the source map: $\alpha: (\bigoplus_{i=1}^n S_i) \times \mathcal{T} \to \bigoplus_{i=1}^n S_i; \alpha((u_1 \oplus u_2 \oplus ... \oplus u_n), r) = (u_1 \oplus u_2 \oplus ... \oplus u_n) =$

 $(\alpha_1(u_1,r) \oplus \alpha_2(u_2,r) \oplus \dots \oplus \alpha_n(u_n,r))$ be proper by using a next commutative diagram into T:

The map defined by: $f:f((u_1, r_1) \oplus (u_2, r_2) \oplus \dots, (u_n, r_n)) = ((u_1 \oplus u_2 \oplus \dots \oplus u_n), r_n)$ which is $(\mathcal{S}_1 \oplus \mathcal{S}_2 \oplus \dots \oplus \mathcal{S}_n)$

Copyright © 2023. Journal of Northeastern University. Licensed under the Creative Commons Attribution Noncommercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

69

surjective continuous since

 $\begin{aligned} f &= (\mathcal{S}_1 \times \mathcal{T}) \oplus (\mathcal{S}_2 \times \mathcal{T}) \oplus \dots \oplus (\mathcal{S}_n \times \mathcal{T}) \xrightarrow{\cong} (\mathcal{S}_1 \oplus \mathcal{S}_2 \oplus \dots \oplus \mathcal{S}_n) \times \mathcal{T} \xrightarrow{p_{r_1, 2, 3, \dots, n}} (\mathcal{S}_1 \oplus \mathcal{S}_2 \oplus \dots \oplus \mathcal{S}_n) \times \mathcal{T} \\ &((u_1, r_1) \oplus (u_2, r_2) \oplus \dots \oplus (u_n, r_n)) \longrightarrow ((u_1 \oplus u_2 \oplus \dots \oplus u_2), (r_1, r_2 \dots, r_n)) \to \\ &((u_1 \oplus u_2 \oplus \dots \oplus u_2), r_n) \text{Therefore } (\mathcal{S}_1 \oplus \mathcal{S}_2 \oplus \dots \oplus \mathcal{S}_n) \text{ is } \mathcal{SCT}\text{-space.} \end{aligned}$

Proposition (3):

Let S_i be SCT -space, i = 1, 2, ..., n then $\bigoplus_{i=1}^n S_i$ is SCT -space and the collection of every orbits $N = \bigoplus_{i=1}^n S_i / T$ is SC -groupoid of base $M = S_i / T$, i = 1, 2, ..., n with identification topology associated to the morphismhh $\eta: \bigoplus_{i=1}^n S_i \to \bigoplus_{i=1}^n S_i / T$, $\eta(u_1, u_2, ..., u_n) = [(u_1, u_2, ..., u_n)]$. **Proof:**

Since $\bigoplus_{i=1}^{n} S_i$ is *SCT* -space (Proposition(4,2)).By $\psi: (\bigoplus_{i=1}^{n} S_i) \times \mathcal{T} \to \bigoplus_{i=1}^{n} S_i$, defined by ψ ($(u_1 \oplus u_2 \oplus \dots \oplus u_n), r$) = ($\varphi(u_n, r)$) where π_i is the law of action of \mathcal{T} on S_i , $i = 1, 2, \dots, n$. To show that $(N = \bigoplus_{i=1}^{n} S_i / \mathcal{T}, M = S_i / \mathcal{T}, i = 1, 2, \dots, n)$ is an *SC*-groupoid.(1)($N = \bigoplus_{i=1}^{n} S_i / \mathcal{T}, M = S_i / \mathcal{T}, i = 1, 2, \dots, n$) is *TG* since the functions w and δ are continuous functions and λ is continuous and then α is continuous since the function $\bigoplus_{i=1}^{n} \varphi_i: \bigoplus_{i=1}^{n} S_i \to S_1 / \mathcal{T} \oplus S_2 / \mathcal{T} \oplus \dots \oplus S_n / \mathcal{T}$ is constant on the identification function's fibers, η . Consequently, unique morphism exists $\tau = \tau: N \to \bigoplus_{i=1}^{n} M_i$ in T If There is a commutative relationship in T in the following diagram:

by way of the identification function 's universal property, so $\alpha: N = \bigoplus_{i=1}^{n} S_i / \mathcal{T} \xrightarrow{i} \bigoplus_{i=1}^{n} M_i \xrightarrow{i} M_1$ is continuous and β is continuous, because $\beta = \alpha o \delta$. (2) The base space $M = S_i / \mathcal{T}$, i = 1, 2, ..., n is a Hausdorff (Theorem (2,10)).(3)To prove the source function $\alpha: \bigoplus_{i=1}^{n} S_i / \mathcal{T} \rightarrow S_i / \mathcal{T}$, i = 1, 2, ..., n, $\alpha([(u_1 \oplus u_2 \oplus ... \oplus u_n)]) = \varphi_n(u_n)$ is proper. The map $\mathcal{T} \xrightarrow{\cong} \{(u_1 \oplus u_2 \oplus ... \oplus u_n, u_o)\} \times \mathcal{T}$ $\xrightarrow{\Psi^*} \psi((u_1 \oplus u_2 \oplus ... \oplus u_n, u_o), \mathcal{T})$ is continuous and then all orbit $\psi((u_{1\oplus}^\circ ... \oplus u_n^\circ), \mathcal{T})$ is compact (\mathcal{T} is compact) s.t $\psi^* = \psi | \{(u_1 \oplus u_2 \oplus ... \oplus u_n, u_o) \times \mathcal{T}\}$. But α -fiber space, however $N_{\varphi(u_o)} = \alpha^{-1}(\varphi(u_o))$ is closed subspace of $\psi((u_1 \oplus u_2 \oplus ... \oplus u_n, u_o), \mathcal{T})$ since S_i / \mathcal{T} , i = 1, 2, ..., n is Hausdorff (Theorem (2,10). Hence, α -fiber space $N_{\varphi(u_o)}$ is compact for all $u_o \in S_i$, i = 1, 2, ..., n. Hence, a fibers of α be compact. To prove that the function α be closed, the function $f^{u_o}: S_i \rightarrow N^{\varphi(u_o)}, i = 1, 2, ..., n$ defined by $f_{u_o}(u_1 \oplus u_2 \oplus ... \oplus u_n) = [(u_o, u_1 \oplus u_2 \oplus ... \oplus u_n)]$ is homeomorphism. Thus $S_1, S_{2,...,} S_n$ are compact ($N_{\varphi(u_o)}$ are compact) and then S_i / \mathcal{T} is compact, i = 1, 2, ..., n. Consider the commutative diagram that follows in T:

Copyright © 2023. Journal of Northeastern University. Licensed under the Creative Commons Attribution Noncommercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/

where the η , $\bigoplus_{i=1}^{n} \varphi_i$ will be closed (Proposition (2,4)) P_{rn} is closed. Thus, the function α is proper and then $(\bigoplus_{i=1}^{n} S_i / T, S_n / T)$ is an *SC*-groupoid.

Proposition (4):

If (N, M) be an SC-groupoid then the α -fiber spaces $\bigoplus_{i=1}^{n} N_{x_i}$ and $\bigoplus_{j=1}^{n} N_{y_j}$ are isomorphic group

spaces for any any $n \in {}_{\mathcal{Y}} N_{\mathcal{X}}$.

Proof:

 $\bigoplus_{i=1}^{n} N_{x_{i}} \text{ is } SC_{x}N_{x} \text{-space and} \bigoplus_{j=1}^{n} N_{y_{j}} \text{ is } SC_{y}N_{y} \text{-space} \bigoplus_{i=1}^{n} N_{x_{i}} \text{ (Proposition (3,8)).}$ Homeomorphic to $\bigoplus_{j=1}^{n} N_{y_{j}}$ by $R_{\delta(n_{1},n_{2}...,n_{n})} : N_{x1} \bigoplus N_{x2} \bigoplus ... \bigoplus N_{x3} \rightarrow$

$$N_{y1} \oplus N_{y2} \oplus \dots \oplus N_{yn}$$

$$R_{\delta(n_1,n_2\dots,n_n)}(h_1 \oplus h_2 \oplus \dots \oplus h_n) = \lambda(n_1,n_2,\dots,n_n,\lambda(h_1 \oplus h_2 \oplus \dots \oplus h_n,\delta(n_1,n_2,\dots,n_n)) = \lambda(n_1,n_2,\dots,n_n)$$

 n_n))), vertex group $_x N_x$ isomorphic to the vertex group $_y N_y$ using inner automorphism

 $I_{n(n_1,n_2...,n_n)}(h_1 \oplus h_2 \oplus ... \oplus h_n) = \lambda(n_1, n_2..., n_n, \lambda(h_1 \oplus h_2 \oplus ... \oplus h_n, \delta(n_1, n_{2,...,}, n_n))) \text{ and the next diagram be commutative into } T:$

$$N_{x_{1}} \oplus N_{x_{2}} \oplus \dots \oplus N_{x_{n}} \times {}_{x}N_{x} \xrightarrow{\lambda_{1}} \longrightarrow N_{x_{1}} \oplus N_{x_{2}} \oplus \dots \oplus N_{x_{n}}$$

$$R_{\delta_{(n_{1},n_{2},\dots,n_{n})} \times I_{n_{(n_{1},n_{2},\dots,n_{n})}} \bigvee_{N_{y_{1}} \oplus N_{y_{2}} \oplus \dots \oplus N_{y_{n}} \times {}_{y}N_{y}} \xrightarrow{\lambda_{2}} N_{y_{1}} \oplus N_{y_{2}} \oplus \dots \oplus N_{y_{n}} \times {}_{y}N_{y}} N_{y_{1}} \oplus N_{y_{2}} \oplus \dots \oplus N_{y_{n}} \times {}_{y}N_{y}} N_{y_{1}} \oplus N_{y_{2}} \oplus \dots \oplus N_{y_{n}} \times {}_{y}N_{y}}$$

Where $\lambda_1 = \lambda|_{N_{x_1} \oplus N_{x_2} \oplus ... \oplus N_{x_n} \times_x N_x}$ and $\lambda_2 = \lambda|_{N_{y_1} \oplus N_{y_2} \oplus .. \oplus N_{y_n} \times_y N_y}$. Hence the pair $(R_{\delta(n_1, n_2, ..., n_n)}, I_{n(n_1, n_2, ..., n_n)})$ represent an isomorphism of group spaces.

Proposition (5):

Suppose $S_1 \oplus S_2$ is the *SCT* -space, $S_1 \oplus S_2$ is the equivarient space for $S_1 \oplus S_2$, let $S_1^{"} \oplus S_2^{"}$ is a Hausdorff space and $\mathbf{r}_2: S_1^{"} \oplus S_2^{"} \to S_1' \oplus S_2'$ is continuous function then $(S_1^{"} \oplus S_2^{"})_{S_1' \oplus S_2'} (S_1 \oplus S_2)$ is the fiber product of equivarient function \mathbf{r}_1 and \mathbf{r}_2 over $S_1' \oplus S_2'$.

Copyright © 2023. Journal of Northeastern University. Licensed under the Creative Commons Attribution Noncommercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/ **Proof:**

Let
$$\pi' \mathscr{O}(S_1^{"} \oplus S_2^{"})_{s_1 \oplus s_2}^{\times} (S_1 \oplus S_2)) \times \mathcal{T} \rightarrow (S_1^{"} \oplus S_2^{"})_{s_1 \oplus s_2}^{\times} (S_1 \oplus S_2)$$
 by
 $\pi'((u_1^{"}, u_2^{"}), (u_1, u_2), a) = ((u_1^{"}, u_2^{"}), \pi ((u_1, u_2), a))$ where π be a law action for \mathcal{T} onto $S_1 \oplus S_2$. π' be the continuous action for \mathcal{T} onto $(S_1^{"} \oplus S_2^{"})_{s_1' \oplus s_2'}^{\times} (S_1 \oplus S_2),$
 $(1)\pi'((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2), e) = (u_1^{"} \oplus u_2^{"}),$
 $\pi(u_1 \oplus u_2, e)) = ((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2)),$ since $\pi ((u_1 \oplus u_2), e) = (u_1 \oplus u_2)$ for
every $((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2)) \in (u_1^{"} \oplus u_2^{"})_{s_1' \times s_2'}^{\times} (u_1 \oplus u_2). (2) \pi'$
 $((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2)), \mu(r_1, r_1)) = ((u_1^{"} \oplus u_2^{"}), \pi ((u_1 \oplus u_2), \lambda(r_1, r_1))) =$
 $((u_1^{"} \oplus u_2^{"}), \pi (\pi ((u_1 \oplus u_2), r_1), r_2) = \pi' (\pi' (((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2)), r_1), r_2),$ where λ is law of
composition.(3) If $\pi' (((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2)), r_1) = ((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2)) \Rightarrow \pi ((u_1 \oplus u_2), r) = (u_1 \oplus u_2) \Rightarrow$
 $r=e, since $s_1 \oplus s_2$ is free \mathcal{T} -space. (4) Consider the following diagram:$

In which $r_1 \circ \pi \circ (P_2 \times id_{\mathcal{T}})((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2), r)$ = $r_2 \circ P_1((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2), r)$. Hence there exist a unique morphism $\theta = \pi'$: $((\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'}(\mathcal{S}_1 \oplus \mathcal{S}_2)) \times \mathcal{T} \rightarrow (\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'}(\mathcal{S}_1 \oplus \mathcal{S}_2)$ given by $\pi'((u_1^{"} \oplus u_2^{"}), (u_1 \oplus u_2), r) =$ $((u_1^{"} \oplus u_2^{"}), \pi((\mathcal{S}_1 \oplus \mathcal{S}_2), r))$ making a whole diagram commutative into T by an universal property for fiber product. Hence $(\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'}(\mathcal{S}_1 \oplus \mathcal{S}_2)$ is free \mathcal{T} -space. To show that action groupoid $(((\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'}(\mathcal{S}_1 \oplus \mathcal{S}_2) \times \mathcal{T}, (\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'}(\mathcal{S}_1 \oplus \mathcal{S}_2))$ is SC-groupoid. $(\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})$ is Hausdorff

space and $(\mathcal{S}_1 \oplus \mathcal{S}_2)$ is Hausdorff space (Definition (3,4)). Hence $(\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'} (\mathcal{S}_1 \oplus \mathcal{S}_2)$ is Hausdorff

space (subspace of Hausdorff $(\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'} (\mathcal{S}_1 \oplus \mathcal{S}_2)$. The fibers $\alpha^{-1}(u_1 \oplus u_2) = \{ (u_1 \oplus u_2) \} \times \mathcal{T}$ of a source function for the action groupoid $((\mathcal{S}_1 \oplus \mathcal{S}_2) \times \mathcal{T}(\mathcal{S}_1 \oplus \mathcal{S}_2))$ are compact since $(\mathcal{S}_1 \oplus \mathcal{S}_2)$ is *SCT*-space, but $\{ (u_1 \oplus u_2) \} \times \mathcal{T} \cong \mathcal{T}$ hence a source function for an action groupoid $(\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'} (\mathcal{S}_1 \oplus \mathcal{S}_2) \times \mathcal{T}, (\mathcal{S}_1^{"} \oplus \mathcal{S}_2^{"})_{\mathcal{S}_1' \oplus \mathcal{S}_2'} (\mathcal{S}_1 \oplus \mathcal{S}_2))$ is proper.(Proposition (2,4)).

Proposition (6):

Let (N, M) be an SSC-groupoid then $N_{x_1} \oplus N_{x_2}$ is $SSC_x N_x$ -space, for all $x \in M$.

Proof:

 N_{x_1} and N_{x_2} are $SC_x N_x$ -space, (Proposition (3,8)). $G_{x_1} \oplus G_{x_2}$ is $SC_x N_x$ -space, (Proposition (4,2)). To show that the function $\varphi_x : N_{x_1} \oplus N_{x_2} \rightarrow N_{x_1} \oplus N_{x_2} / {}_x N_x$ is submersion, for every $x \in M$. The maps $\varphi_{x_1} * \varphi_{x_2} : N_{x_1} \oplus N_{x_2} \rightarrow N_{x_1} \oplus N_{x_2} / {}_x N_x$ and $\beta_x : N_{x_1} \oplus N_{x_2} \rightarrow M_1 \oplus M_2$ are both identification function $(\beta_x \text{ is surjective proper function}, (Proposition (3,2))$ and Proposition (2,4))) and constant on each other's fibres. The dotted arrows in the figure below:

existing, are unique into T by universal property for identification, a function η_x be provided by $\eta_x(\varphi_{x_1} \oplus \varphi_{x_2}(n_1, n_2)) = \beta_x(n_1, n_2)$. Now, to show that the function $\varphi_{x_1} \oplus \varphi_{x_2}$: $N_{x_1} \oplus N_{x_2} \rightarrow N_{x_1} \oplus N_{x_2} / {}_xN_x$ is submersion. unique in T.

$$\operatorname{Let}(n_1 \oplus n_2) \in \operatorname{N}_{x_1} \oplus \operatorname{N}_{x_2}, \varphi_{x_1} \oplus \varphi_{x_2} (n_1 \oplus n_2) \in \operatorname{N}_{x_1} \oplus \operatorname{N}_{x_2} / \operatorname{x} \operatorname{N}_x, \eta_x \left(\varphi_{x_1} \oplus \varphi_{x_2} (n_1 \oplus n_2) \right) =$$

 $\beta_x(n_1, n_2) \in M_1 \oplus M_2$ then there is an open neighborhood $U_{(n_1, n_2)}$ of $\beta_x(n_1, n_2)$ in $M_1 \oplus M_2$ and continuous right inverse $v: U \to N_{x_1} \oplus N_{x_2}$ to $\beta_x: N_{x_1} \oplus N_{x_2} \to M_1 \oplus M_2$ such that $vo\beta_x(n_1 \oplus n_2) = (n_1 \oplus n_2)$, $(\beta_x$ is submersion (N, M) is SSC-groupiod).

Now define $v'_{(n_1 \oplus n_2)} : \eta_{\chi}^{-1}(U_{(n_1 \oplus n_2)}) \xrightarrow{\eta_{\chi}} U_{(n_1 \oplus n_2)} \xrightarrow{\nu} N_{x_1} \oplus N_{x_2}$ by $v'_{(n_1 \oplus n_2)}(a) = vo \eta_{\chi}(a)$ where

 $\eta_x^{-1}(U_{(n_1\oplus n_2)}) \text{ is open neighborhood of } \varphi_{x_1} \oplus \varphi_{x_2} (n_1 \oplus n_2) \text{ in } N_{x_1} \oplus N_{x_2/x} N_x. v'_{(n_1\oplus n_2)} \text{ is continuous and } (\varphi_{x_1} \oplus \varphi_{x_2}) ov'_{(n_1\oplus n_2)})(a) = (\varphi_{x_1} \oplus \varphi_{x_2}) ov \eta_x(a) = \eta^{-1} o \eta_x o((\varphi_{x_1} \oplus \varphi_{x_2}) ov \eta_x(a) = \eta_x^{-1} o \beta_x ov o(\varphi_{x_1} \oplus \varphi_{x_2}) (a) = \eta_x^{-1} o \eta_x(a) = a$ And $v'_{(n_1\oplus n_2)}(\varphi_{x_1} \oplus \varphi_{x_2})(n_1 \oplus n_2)) = v o \eta_x(\varphi_{x_1} \oplus \varphi_{x_2}(n_1 \oplus n_2)) = v o \beta_x(n_1 \oplus n_2) = n.$

Proposition (7):

Proof:

The function $\xi_x: N_x \times N_x \times ... \times N_x \to N_1 \times N_2 \times ... \times N_n$ is surjective proper (Definition (3,3)). Next, the \leftarrow n.time \rightarrow functions $\xi_x: N_x \times N_x \times ... \times N_x \to N_1 \times N_2 \times ... \times N_n$ and $\eta_x: N_x \times N_x \times ... \times N_x \to N_x \times N_x \times ... \times N_x/_x N_x$ are both constants on the fiber of each other and identification functions. Hence, in the following figure, the dotted arrows:

exist single into T by a universal property for identification function, a function \mathbf{r} be given by $\mathbf{r}([(n_1, n_2 ..., n_n)]) = \lambda(n_1, \delta(n_2 ..., n_n))$ has to become homeomorphism. (\mathbf{r}, η_x) is the isomorphism for TG where η_x is the function presented by $\eta_x(\varphi_x(n_1, n_2 ..., n_n)) = \beta_x(n_1, n_2 ..., n_n)$ where $\varphi_x: N_x \times N_x \times ... \times N_x \rightarrow N_x \times N_x \times ... \times N_X /_x N_x$. (Proposition (4,6)).

Proposition (8):

Let $S_1 \oplus S_2$ be an SSCT-space then Ehresmann groupoid $((S_1 \oplus S_2) \times (S_1 \oplus S_2)/T, (S_1 \oplus S_2)/T)$ is submersive groupoid.

Proof:

Let $N = ((S_1 \oplus S_2) \times (S_1 \oplus S_2))/\mathcal{T}$, $M = (S_1 \oplus S_2)/\mathcal{T}$, (N, M) be an transitive SC-groupoid (Proposition

Copyright © 2023. Journal of Northeastern University. Licensed under the Creative Commons Attribution Noncommercial No Derivatives (by-nc-nd). Available at https://dbdxxb.cn/ (4,3)) into prove that the function $\beta_x : N_x \oplus N_x \to M$ be a submersion. If $h = [(u \oplus \hat{u}), (\hat{u} \oplus \hat{\tilde{u}})] \in N_x \oplus N_x$, then $\beta_x (h) = \varphi (u \oplus u')$ and there exists an open neighborhood V of $\varphi (u \oplus u')$ in M as well as a continuous right inverse. $v : V \to S_1 \oplus S_2$ to φ s.t $v : \varphi (u \oplus u')) = (u \oplus u') (\varphi : S_1 \oplus S_2 \to M = (S_1 \oplus S_2)/\mathcal{T}$ is submersion, (Definition (3,11)). Define $v : V \to N_x$ by: $v : (y) = [(v : (y), (\hat{u} \oplus \hat{\tilde{u}})])$ for every $y \in V$. $\beta_x \circ v : (y) = \beta_x ([(v : (y), (u \oplus \hat{u})]) = \varphi \circ v : (y) = y = I_V$ for every $y \in V$ and $v : (y) \circ \beta_x (h) = v : (\beta[(u \oplus u'), (\hat{\tilde{u}} \oplus \hat{\tilde{u}})]) = v : (\varphi (u \oplus u')) = [(v : (\varphi (u \oplus u'), (\hat{\tilde{u}} \oplus \hat{\tilde{u}})]) = h$

Proposition (9):

Let (N, M) be *SSC*-groupoid then Ehresmann groupoid $((N_x \times N_x \times ... \times N_x /_x N_x , N_x /_x N_x)$ is SSC-groupoid for every $x \in M$.

Proof:

If $N = N_x \times N_x \times ... \times N_x/_x N_x$, $M = N_x/_x N_x$, (N, M) be an transitive SC-groupoid (Proposition (4,3)) to display that a function $\beta_X : N_x \to M$ be submersion. If $h = [(u_1, u_2, ..., u_n)] \in N_x$, then $\beta_X (h) = \varphi(u_1)$, there exists the open neighborhood V of $\varphi(u_1)$ in M and continuous right inverse $v : V \to N_x$ into φ s.t $v * o \varphi(u) = u(\varphi : N_x \to M = N_x/_x N_x$ is submersion, (Definition (2,8)). Define $v^* : U \to N_x$ by: v^* $(y) = [(v^*(y), u^*)]$ for every $y \in U$. Define $v^{**} : V \to N_x$ by: $v * (y) = [(v * (y), (u_2, ..., u_n))]$ for every $y \in V$. $\beta_x \circ v * (y) = \beta_X ([(v * (y), u_1))]) = \varphi \circ v * (y) = y = I_V$ for every $y \in V$ and $v * (y) \circ \beta_X (h) = v * (\beta[(u_1, u_2, ..., u_n)]) = v * (\varphi(u_1)) = [(v * (\varphi(u_1), u_2, ..., u_n))] = [(u_1, u_2, ..., u_n)] = h$.

5. Conclusion:

We have studied topological groupoid. we also studied privately type of topological groupoid which is SC-groupoid, SSC-groupoid, SC \mathcal{T} -space and SSC \mathcal{T} -space and the relationships among them written as proposition.

6. Acknowledgement

The authors (Seemaa Mohammed Ali and Taghreed Hur Majeed) would be grateful to thank Mustansiriyah University in Baghdad, Iraq. (www.mustansiriyah.ed.iq)in the current effort for their assistance and cooperation.

References:

[1] R. Brown, "Topology and Groupoids" Book surge LIC, Deganwy, United Kinkdom, 2020.

[2] M. H. Gürsoy, "General Topology Groupoids" Punjab University Journal of Mathematics, vol. 53, No.2, pp. 35-49, 2021.

[3] M. H. Gürsoy and I. Ieen, "The Homorphism of Topology Groupoids" NOVISAD J. MATH., vol.44, No1, pp. 129-141, 2014...

[4]T.H. Majeed, Algebraic Topology: On Some Results of Category for Source Proper Groupoid Space (Journal of Interdisciplinary Mathematics, United Kingdom, 2022), PP.1-6.

[5] T. H. Majeed, Action of topological groupoid on topological space (The International Journal of Nonlinear Analysis and Applications Iran, 2022), PP.85-89.

[6] V. Marin and J. Avila and H. Pinedo, "Isomorphism Theorems for Groupoids and Some Application" Hindawi, International Journal of Mathematics and Mathematical Sciences, vol.2020,2020.

[7] M. Q. Mann'a " Groupoid and Topological Qoutient Group" Global Journal of pure and applied Mathematics, vol.13, No. 7, pp. 3173-3191, 2017.

[8]Z.K and T.Majeed, " Action of Representation for Lie Groups " UtilitasMathematica, ISSN 0315-3681 volume 120,pp .84-98 ,2023.