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Abstract: 
One of the most common methods of 3D printing—fused deposition modeling (FDM), also 
known as fused filament fabrication—uses layer-by-layer addition of polymeric materials 
to form a completed piece. This addition is facilitated by computer-aided design, which 
instructs the printer where to add polymer. PLA is popular for 3D printing due to its 
affordability, renewability (e.g., derived from corn or sugar cane), and biocompatibility . 
Thermal processing conditions also play a key role in sample material properties. For 
example, samples made with low build platform temperatures have increased mechanical 
properties, increased interfacial strength, larger crystal size, and lower crystallinity. This 
review focuses on PLA-based nanocomposites with cellulose, metal-based nanoparticles, 
continuous fibers, carbon-based nanoparticles, or other additives. These additives impact 
both the physical properties and printability of the resulting nanocomposites. We also detail 
the optimal conditions for using these materials in FDM 3D printing. PLA biodegradation 
depends on pH (degrading faster in highly acidic or basic media), temperature, autocatalytic 
behavior (catalysis by the lactic acid formed during degradation), and the degree to which 
water enters the matrix. 

Keywords:  nanocomposites, crystallinity, biocompatibility. 

 
I. INTRODUCTION 

FDM involves drawing a filament through a heated extrusion head, which deposits 
the molten polymer onto a bed where the 3D-printed part forms [7,8]. The FDM 
process requires specific parameters for draw ability and process ability that influence 
not only the filament production but also the layer deposition during printing [9]. For 
viable printing, the extruded material must have a low melting temperature and fast 
solidification time [7]. The printability and strength of printed parts also relies on good 
adhesion between layers and a homogeneous distribution of any additives [10]. 
Uniform distribution of additives ensures that agglomerates do not clog the printing 
apparatus or cause weak points in the printed material [11]. Additive manufacturing 
(3D printing) enables rapid prototyping, convenient customization, and unique 
capabilities, while democratizing the manufacturing process in ways that are only just 
beginning to be leveraged on a large scale [1–3]. These burgeoning manufacturing 
trends, however, also intersect with growing concerns about the ecological impact of 
the materials used in manufacturing. As pollution from plastic waste grows worldwide, 
developing materials that are biodegradable and bio-renewable becomes increasingly 
important [4–6]. Unfortunately, most materials commonly used for 3D printing are 
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neither . Additionally, PLA is insulating, which precludes its use in conducting parts 
[19]. To address each of these issues, various additives have been incorporated into 
PLA to increase its strength and conductivity. In this review we delve into different 
additives that enhance mechanical, thermal, or electrical properties while maintaining 
the biodegradability of the resulting PLA/additive nanocomposite.  

 

 
Fig 1: polylactic acid 

 

 
Fig 2: lactic acid  

 

II. Metal-Based Additives 
During processing, the suspended silver nanowires aligned in the direction of shear force 

homogeneously but broke down. Specifically, the shear force and heat required for 3D 
printing broke the nanowires into smaller particles but conserved the surface morphology. 
TGA showed that the nanowires influence the degradation of the PLA matrix: They increased 
the degradation temperature, increased crystallinity before printing, decreased Tg, decreased 
crystallinity after printing, and did not change Tm [46]. Interestingly, the concentration of 
nanowires decreased after printing, indicating that some silver nanowires stuck to the inside 
of the polymer extrusion nozzle. Overall, the addition of silver nanowires added a barrier to 
degradation of the PLA/Ag nanocomposite while adding an antibacterial property, killing 
100% of both S. aureus and E. coli for all concentrations of silver nanowires studied [46]. 
Copper fiber/PLA composites contain uneven surface morphologies after FDM 3D printing 
due to the layer-by-layer addition, which often leaves ridges in the surface of printed 
materials. To ameliorate the effects of this surface structure, laser polishing is employed to 
melt the polymer matrix at the surface, producing a smoother surface  
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Fig 3: Structure and formula of metal based additives 

 
The surface roughness decreases over 90% after laser treatment to 0.87 µm Sα with a 5 

W laser of 200 µm (ideal parameters) as seen in Figure 5. This polishing also significantly 
improved the glass transition, storage modulus, Young’s modulus (34.2%), loss modulus, and 
tensile strength (52.98%) of Cu/PLA due to strong interfacial adhesion between PLA and Cu 
fibers after treatment .More recent studies on introducing silver nanoparticles indicate that 
composites with no significant change in bulk properties can be formed with an addition of 
0.01–5 wt % silver nanoparticles. At all loadings of silver nanoparticles studied, these new 
PLA/Ag nanocomposites showed antimicrobial properties against E. coli, P. aeruginosa, and 
S. aureus [47]. Many industrial applications cannot use FDM-printed parts because fractures 
occur between layers due to poor interfacial adhesion and low surface quality Therefore, 
modifying FDM PLA nanocomposites to increase this surface quality may increase industrial 
use of these nanocomposites. Incorporating aluminum into nanocomposites produces air-
cooled heat exchangers with high thermal conductivity at a low cost. These PLA/Al 
composites, when laser polished, show increased surface quality, decreased surface 
roughness, increased storage modulus, decreased loss tangent, increased tensile strength, and 
increased Young’s modulus  

 
III. PLA 

PLA biodegradation depends on pH (degrading faster in highly acidic or basic media), 
temperature, autocatalytic behavior (catalysis by the lactic acid formed during degradation), 
and the degree to which water enters the matrix [23]. PLA also retains good mechanical 
strength while remaining process able through melt mixing, solution mixing, injection molding, 
and 3D printing [21]. However, several drawbacks limit its industrial use such as brittleness, 
poor thermal stability, low crystallinity, low elongation at break, poor impact strength, low 
heat-distortion temperature, and limited drawability [9,21,24]. These drawbacks, especially the 
slow crystallization, deter the replacement of fossil-based thermoplastics with PLA [25]. To 
increase the functionality of PLA, researchers have introduced additives such as cellulose, 
metals, carbon, continuous fibers, and others to modulate properties such as thermal 
conductivity, electrical conductivity, mechanical strength, viscosity, and degradation time 
[9,26]. s. Chacón et al. investigated the effects of these parameters on the properties of neat 
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PLA FDM-printed tensile bars as depicted in Figure 2 [27]. Increasing layer thickness 
increased tensile and flexural strength for upright printed tensile bars. However, on-edge and 
flat printed tensile bars had only slight differences in the tensile and flexural strength [27,28]. 
Decreasing feed rate decreased tensile and flexural strength in upright samples but had limited 
effects on materials produced by on-edge and flat printing orientations. For all samples, the 
ductility decreased as layer thickness increased.  
 
Overall, on-edge orientation produced the best mechanical performance, ductility, and 
stiffness. Moreover, if an on-edge orientation is used, high layer thickness and low feed rate 
maximize ductility [27]. The silylation reaction functionalizes the hydroxyl groups on 
cellulose, increasing CNW compatibility with PLA. Functionalization also modifies the usable 
temperatures of the PLA/CNW nanocomposite. The addition of silane A-151 increased the 
Tmax to 304.4 ◦C [24]. Importantly, the concentration of A-151 must be high enough, at least 
8 wt %, to fully coat the CNWs and create an even surface. While silylation increased the 
compatibility of the PLA and CNWs, the tensile strength and tensile modulus decreased 
minimally with increasing silane concentration. However, the elongation at break increased 
significantly (from 12.3% to 213.8%) with increasing silane concentration. The stiffness also 
increased with silane addition. In general, the tensile strength and tensile modulus increase with 
silylation of CNWs; however, the thermal properties, including the glass transition 
temperature, crystallinity, melting temperature, and crystallization temperature, decrease after 
silylation. Tensile properties increased with infill density regardless of infill pattern. 
Traditionally, PLA is sold as filaments for FDM with colorants and additives already 
incorporated. These additives can have profound effects on the properties of the resulting 
printed material. For example, Cicala et al. observed a marked difference in elasticity among 
various commercial PLA samples, demonstrating the effect of different additives on 
mechanical properties [35].  
 
Importantly, Cicala et al. determined that polymers with high viscosity print with increased 
precision because of their resistance to flow after printing, which allows them to hold their 
shape and minimize voids between printed layers [35]. Cuiffo et al. investigated commercial 
PLA samples with calcium carbonate additives and found that the CaCO3 concentrated in the 
voids of the 3D-printed materials after FDM printing [36]. Additionally, these PLA samples 
underwent minor chemical reactions during the FDM process, as shown by changes in the 
Fourier transform infrared (FTIR) Adding plasticizers such as poly(ethylene glycol) (PEG) into 
PLA may increase ductility and toughness, but often decreases strength and stiffness [20]. 
These drawbacks may be mitigated by introducing nucleating agents, such as CNCs or CNFs, 
which increase the crystallinity of the PLA/PEG matrix and thus increase the strength and 
stiffness. Adding CNFs and CNCs gives significantly higher crystallinity than neat PLA or 
commercially available PLA/talc nanocomposites [20]. Solvent effects on CNC dispersion 
have recently been investigated in both amorphous and semi-crystalline PLA samples. 
Thermodynamic analysis identified dimethyl sulfoxide/tetrahydrofuran (DMSO/THF) as an 
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optimal solvent system to incorporate CNCs into PLA because it can both dissolve the PLA 
and distribute the CNCs [43]. In semi-crystalline PLA nanocomposites, the CNCs distribute 
effectively but in amorphous nanocomposites the CNCs aggregate [43]. With the addition of 
CNCs, the storage modulus and complex viscosity increase. Significantly, residual solvent in 
the nanocomposite matrices caused dramatic decreases in complex viscosity (1 to 2 orders of 
magnitude) [43]. 
 

 
Fig 4: PLA 

 
Fig 5: Fused decomposition modeling 
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Fig 6: Biodegradeable PLA 

III .Cellulose-Based Additives 

The silylation reaction functionalizes the hydroxyl groups on cellulose, increasing 
CNW compatibility with PLA. Functionalization also modifies the usable temperatures of 
the PLA/CNW nanocomposite. The addition of silane A-151 increased the Tmax to 304.4 
◦C [24]. Importantly, the concentration of A-151 must be high enough, at least 8 wt %, to 
fully coat the CNWs and create an even surface. While silylation increased the 
compatibility of the PLA and CNWs, the tensile strength and tensile modulus decreased 
minimally with increasing silane concentration. However, the elongation at break increased 
significantly (from 12.3% to 213.8%) with increasing silane concentration. The stiffness 
also increased with silane addition. In general, the tensile strength and tensile modulus 
increase with silylation of CNWs; however, the thermal properties, including the glass 
transition temperature, crystallinity, melting temperature, and crystallization temperature, 
decrease after silylation. Cellulose nanofibers (CNFs) have also been investigated in the 
context of PLA 3D printing. Interestingly, the method of 3D printing affects the mechanical 
properties of CNF-containing PLA nanocomposites [40]. Specifically, the strength and 
modulus of FDM-printed neat PLA is 49 and 41% lower than its compression molded 
counterparts. With the addition of CNFs, at just 1 wt %, the strength and modulus of 3D-
printed PLA/CNFs increased by 84% and 63% compared to PLA, respectively [40]. 
Incorporating CNFs into PLA significantly decreased voids and facilitated nucleation and 
crystallization, leading to increased matrix crystallinity. 

 

IV. CONCLUSION 

PLA is an important biodegradable polymer produced from some of the most renewable 
feedstocks available. While PLA is useful in FDM 3D printing, its drawbacks—brittleness, 
poor thermal stability, low crystallization, low elongation at break, poor impact strength, 
low heat distortion temperature, and limited drawability—reduce its prevalence as an 
industrial material. Therefore, additives have been incorporated into PLA to form 
nanocomposites with enhanced mechanical, electrical, or thermal properties. Cellulose is 
commonly incorporated into PLA matrices to enhance the mechanical properties while 
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maintaining complete biodegradability 
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