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Abstract 
In this paper, a priori error analysis has been investigated for continuous (conforming) Galerkin 
finite element method used for solving a general scalar linear second-order ordinary BVPs. We 
derived optimal order a priori error bounds in the 𝐻  (energy) and 𝐿  norms utilising the Ritz 
Projection and standard a priori error analysis techniques and tools. 
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1. Introduction 
The finite element method (FEM) is a broad family of numerical and approximate methods 
used for solving ordinary differential equations (ODEs) and partial differential equations 
(PDEs) and also it is used for solving integro-differential equations (IDEs). The FEMs have 
many excellent numerical features made them popular and widely used in scientific computing. 
The main advantage of the FEM is its ability for solving a wide variety of problems on different 
computational domains with different shapes. For example, finite difference methods (FDMs) 
can solve problems on rectangular and triangular meshes while generally, FEMs can handle 
geometries of any shapes. 

The study of numerical solutions of ODEs has attracted the attention of researchers and 
important achievements have made. Estep [2] in 1995 investigated the use of FEM for time 
integration of initial value problems (IVPs) of ODEs and the researcher obtained an asymptotic 
error estimates. In 2000, Schötzau and Schwab [8] studied and used ℎ𝑝-version DG time-
stepping method for solving initial value ODEs and also, they derived new explicit a priori 
error estimates. In 2001, Estep and Stuart [3] considered and investigated the dynamical 
behaviour of the DG method for ODEs. Wihler in 2005 in [9] examined the use of 𝑝-version 
continuous Galerkin (CG) time-stepping method for approximating the solution of the 
nonlinear IVPs and the author obtained explicit a priori error estimates in 𝐿  - and 𝐻 -norms. 
Schieweck in 2010[7] presented and examined a discontinuous Galerkin-Petrov (DGP) time 
discretisation of evolutionary problems in Hilbert Space. 

Matthies and Schieweck in 2011 [6] used higher order CG and DG variational methods for 
obtaining the approximate solution of a nonlinear system of ODEs. Janssen and Wihler in 2014 
[5] examined the ℎ𝑝 - CG and DG time-stepping methods for nonlinear IVPs and they 
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discussed the existence of their discrete solutions. Zhao and Wei in 2014 [10] presented and 
used a unified DG framework for nonlinear ODEs. Holm and Wihler in 2016 [4] analysed and 
used CG and DG time-stepping methods of arbitrary order for solving nonlinear IVPs in real 
Hilbert spaces. In 2016, Quarteroni and coworkers [1] examined and studied a new high order 
discontinuous Galerkin (DG) FEM for the time integration of Cauchy problem ODEs and they 
proved and obtained a priori error bounds for the proposed method. 

In this paper, we derived a priori error estimates of the FEM solution of generic linear second-
order ordinary BVPs using conforming Galerkin finite element method. The main contribution 
of this paper is deriving optimal order a priori error bounds in the 𝐻  norm. Also, we obtained 
optimal and suboptimal order a priori error bounds in the 𝐿  norm for general scalar linear 
second-order (BVPs) ODEs. 

This paper is organised as follows. In section 2 we give the necessary notations and relevant 
preliminaries of the topic. Section 3 is devoted for the a priori error analysis for the general 
scalar linear second-order ordinary BVPs. The conclusions are given in section 4. 

2. Problem Setting and Notation1 
We consider a general scalar linear second-order BVP ODE 

                                                            −𝑎𝑢 +𝑏𝑢 + 𝑐𝑢 = 𝑓, in 𝐼,                                                                            (1)
𝑢(𝛼) = 𝑢(𝛽) = 0,

  

where 𝐼 = (𝛼, 𝛽), the solution function 𝑢 ∈ 𝐻 (𝐼), the source function 𝑓 ∈ 𝐿 (𝐼) and the 
coefficients 𝑎 > 0, 𝑏, 𝑐 ≥ 0. For simplicity of notations, we use ℋ = 𝐻 (𝐼), ∥⋅∥ℋ=∥⋅∥  for the 
energy norm and ∥⋅∥ ( )=∥⋅∥ for the 𝐿  norm. 

3. A Priori Error Analysis 
The a priori error analysis is very important topic in the study of error and convergence analysis 
of differential equations using FEMs and other methods. In a priori error analysis we are 
interested in finding an error estimator of the form 

                                                                      ∥ 𝑒 ∥ = ∥∥𝑢 − 𝑢 ∥∥

≤ 𝐸(𝑢, 𝑓; 𝑉).                                                          (2) 

Notice that in general the bound in the a priori error analysis depends upon the data of the 
problem, the source function 𝑓, the exact solution 𝑢 of the problem and the space 𝑉. The a 
priori error bounds in general are not computable since they depend on the exact solution of 
the problem 𝑢 which in most cases is unknown. The a priori error analysis is used in the study 
of convergence of the exact solution of the original problem. It is used in finding the order of 
convergence of the exact solution and it tells us the required information about how the 
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convergence is fast or how it is slow. In our problem, the a priori error bound depends on the 
data of the problem, the exact solution 𝑢 of the original problem (1) and the space 𝑉. In this 
section, we consider deriving a priori error bounds for a generic scalar linear second-order 
ordinary BVPs. The error is split in the following form 

                         𝑒 = 𝑢 − 𝑢 = (𝑢 − 𝑅 𝑢) + (𝑅 𝑢 − 𝑢 )

= 𝜌 + 𝜃,                                                  (3) 

where 𝑅 𝑢 ∈ ℋ  is the Ritz projection of the exact solution 𝑢 ∈ ℋ, where ℋ  is a finite 
dimensional subspace of ℋ, 𝜌 = 𝑢 − 𝑅 𝑢 represents the Ritz projection error which is 
available in the literature. The idea here is to bound the quantity 𝜃 = 𝑅 𝑢 − 𝑢 ∈ ℋ  by a 
bound depends on 𝜌 (since we do not have a bound for 𝜃 ), consequently, the whole error 𝑒 can 
then be bounded in terms of 𝜌, i.e., 

                   ∥ 𝑒 ∥ = ∥∥𝑢 − 𝑢 ∥∥ = ∥∥(𝑢 − 𝑅 𝑢) + (𝑅 𝑢 − 𝑢 )∥∥ =∥ 𝜌 + 𝜃 ∥ ≤∥ 𝜌 ∥ +

∥ 𝜃 ∥ ,                 (4) 

where 𝑉 = {ℋ, 𝐿 }. Then, we need to bound 𝜃 by a bound in terms of 𝜌, i.e., 

      ∥ 𝜃 ∥ ≤ ℬ(𝜌),                                                                          (5) 

finally, the whole error is bounded by a bound in terms of 𝜌 

                                               ∥ 𝑒 ∥ =∥ 𝜌 + 𝜃 ∥ ≤∥ 𝜌 ∥ + ℬ(𝜌)

= ℬ̂(𝜌).                                                              (6) 

3.1. A Priori Error Analysis of Linear Elliptic Problems 
In this section, we derive a priori error bounds for a general scalar linear second-order BVP 
ODEs 

Theorem 3.1 ( 𝐇𝟎
𝟏 a Priori Error Bounds for Generic Scalar Linear Second-Order BVP 

ODEs) The finite element approximate solution 𝑢  of the problem (1), satisfies the following 
a priori 𝐻  error estimate 

       ∥ 𝑒 ∥ = ∥∥𝑢 − 𝑢 ∥∥ ≤ 𝐶 ℎ∥𝑢 ∥.                                                                  (7) 

Proof. We start by writing the problem (1) in the weak form: find 𝑢 ∈ ℋ such that 

                   𝑎   𝑢 𝑣 𝑑𝑥 + 𝑏   𝑢 𝑣𝑑𝑥 + 𝑐   𝑢𝑣𝑑𝑥 =   𝑓𝑣, ∀𝑣

∈ ℋ.                                                (8) 

The finite element problem is: find 𝑢 ∈ ℋ ⊂ ℋ such that 
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             𝑎   𝑢 𝑣 𝑑𝑥 + 𝑏   𝑢 𝑣𝑑𝑥 + 𝑐   𝑢 𝑣𝑑𝑥 =   𝑓𝑣𝑑𝑥, ∀𝑣

∈ ℋ.                                                (9) 

Subtracting (9) from (8), then testing with 𝑣 = 𝑣 ∈ ℋ  to have 

                𝑎   (𝑢 − 𝑢 ) 𝑣 𝑑𝑥 + 𝑏   (𝑢 − 𝑢 ) 𝑣 𝑑𝑥 + 𝑐   (𝑢 − 𝑢 )𝑣 𝑑𝑥 = 0, ∀𝑣

∈ ℋ .                        (10) 

Inserting (3) in (10) yields 

              𝑎   (𝜌 + 𝜃) 𝑣 𝑑𝑥 + 𝑏   (𝜌 + 𝜃) 𝑣 𝑑𝑥 + 𝑐   (𝜌 + 𝜃)𝑣 𝑑𝑥

= 0,                                                     (11) 

which implies that 

          

𝑎     𝜌 𝑣 𝑑𝑥 + 𝑎    𝜃 𝑣 𝑑𝑥 + 𝑏    𝜌 𝑣 𝑑𝑥 + 𝑏    𝜃 𝑣 𝑑𝑥

+𝑐     𝜌𝑣 𝑑𝑥 + 𝑐    𝜃𝑣 𝑑𝑥 = 0,                                                                                                             (12)
 

which results in 

         

𝑎     𝜃 𝑣 𝑑𝑥 + 𝑏    𝜃 𝑣 𝑑𝑥 + 𝑐    𝜃𝑣 𝑑𝑥 = −𝑎    𝜌 𝑣 𝑑𝑥

−𝑏     𝜌 𝑣 𝑑𝑥 − 𝑐    𝜌𝑣 𝑑𝑥.                                                                                                                   (13)  
 

Note that 

  𝜌 𝑣 𝑑𝑥 =   (𝑢 − 𝑅 𝑢) 𝑣 𝑑𝑥 = 0, ∀𝑣 ∈ ℋ .              

Therefore, we obtain 

    𝑎   𝜃 𝑣 𝑑𝑥 + 𝑏   𝜃 𝑣 𝑑𝑥 + 𝑐   𝜃𝑣 𝑑𝑥

= −𝑏   𝜌 𝑣 𝑑𝑥 − 𝑐   𝜌𝑣 𝑑𝑥.                           (14) 

Now testing (14) with 𝑣 = 𝜃, we get 
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 𝑎   (𝜃 ) 𝑑𝑥 + 𝑏   𝜃 𝜃𝑑𝑥 + 𝑐   𝜃 𝑑𝑥 = −𝑏   𝜌 𝜃𝑑𝑥 − 𝑐   𝜌𝜃𝑑𝑥,                                    (15) 

which is equivalent to 

𝑎 ∥ 𝜃 ∥ + 𝑏   𝜃 𝜃𝑑𝑥 + 𝑐 ∥ 𝜃 ∥ = 𝑏   − 𝜌 𝜃𝑑𝑥 + 𝑐   − 𝜌𝜃𝑑𝑥.                                           (16) 

Using Cauchy-Schwarz inequality on both sides leads to 

𝑎 ∥ 𝜃 ∥ + 𝑏 ∥ 𝜃 ∥ ∥ 𝜃 ∥ +𝑐 ∥ 𝜃 ∥ ≤ 𝑏∥∥𝜌 ∥∥ ∥ 𝜃 ∥ +𝑐 ∥ 𝜌 ∥∥ 𝜃 ∥ .                                        (17) 

Utilising Young's inequality results in 

                       �̂� ∥ 𝜃 ∥ + 𝑐 ∥ 𝜃 ∥ ≤ 𝑏 ∥ 𝜌 ∥ + 𝑐 ∥ 𝜌 ∥ ,                                                           (18) 

where �̂� = 2𝑎 + 𝑏. Since ∥ 𝜃 ∥ , ∥ 𝜃 ∥ > 0, then using the inequality 

            If  𝛾 + 𝛿 ≤ 𝑚  then  𝛾 ≤ 𝑚,  where  𝛾, 𝛿, 𝑚 ≥ 0,                                                         (19) 

when 𝛾 = �̂� ∥ 𝜃 ∥ , 𝛿 = 𝑐 ∥ 𝜃 ∥  and 𝑚 = 𝑏 ∥ 𝜌 ∥ + 𝑐 ∥ 𝜌 ∥  in (18), we have 

                               ∥ 𝜃 ∥ ≤ �̂� ∥ 𝜌 ∥ + �̂� ∥ 𝜌 ∥ ,                                                                         (20) 

where �̂� = 𝑏/�̂� and �̂� = 𝑐/�̂�. Using Ritz projection error bounds, we have 

                                       ∥ 𝜌 ∥= ∥∥𝑢 − 𝑅 𝑢∥∥ ≤ 𝐶 ℎ ∥𝑢 ∥,                                                           (21)

                                       ∥ 𝜌 ∥ = ∥∥(𝑢 − 𝑅 𝑢) ∥∥ ≤ 𝐶 ℎ∥𝑢 ∥.                                                      (22)
 

Substituting (21) and (22) in (20) we get 

                                                     ∥ 𝜃 ∥ ≤ 𝐶 ℎ ∥𝑢 ∥ ,                                                                    (23) 

where 𝐶 = �̂� 𝐶 + �̂� 𝐶 . Taking the square root, we arrive at 

                                                          ∥ 𝜃 ∥ ≤ 𝐶 ℎ∥𝑢 ∥,                                                                    (24) 

where 𝐶 = 𝐶
/ . Now, using (4), we have 

              ∥ 𝑒 ∥  = ∥∥𝑢 − 𝑢 ∥∥ =∥ 𝜌 + 𝜃 ∥ ≤∥ 𝜌 ∥ +∥ 𝜃 ∥

 ≤ 𝐶 ℎ∥𝑢 ∥ + 𝐶 ℎ∥𝑢 ∥ ≤ 𝐶 ℎ∥𝑢 ∥,                                                              (25)
 

where 𝐶 = 𝐶 + 𝐶 . Note that the bound in (25) is the final a priori estimate of the finite 
element error. 
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Theorem 3.2 ( 𝐋𝟐 a Priori Error Bounds for Generic Scalar Linear Second-Order BVP 
ODEs) The finite element approximate solution 𝑢  of the problem (1), satisfies the following 
a priori 𝐿  error estimates: 

1. When 𝑏 > 0 (in the presence of the integral ∫
ℐ
 𝑒 𝜃𝑑𝑥 and without performing an 

integration by parts on it) we have the following 𝐿  suboptimal error bound 

                                               ∥ 𝑒 ∥= ∥∥𝑢 − 𝑢 ∥∥ ≤ 𝐶 ℎ∥𝑢 ∥.                                                          (26) 

2. When 𝑏 = 0 (in the absence of the integral ∫
ℐ
 𝑒 𝜃𝑑𝑥 ) we have the following 𝐿  optimal 

error bound 

                                          ∥ 𝑒 ∥= ∥∥𝑢 − 𝑢 ∥∥ ≤ 𝐶 ℎ ∥𝑢 ∥.                                                             (27) 

3. When 𝑏 > 0 (in the presence of the integral ∫
ℐ
 𝑒 𝜃𝑑𝑥 and with performing an 

integration by parts on it) we have the following 𝐿  optimal error bound 

                                          ∥ 𝑒 ∥= ∥∥𝑢 − 𝑢 ∥∥ ≤ 𝐶 ℎ ∥𝑢 ∥.                                                            (28) 

Proof. 1. Assume that 𝑏 > 0 and by following the same steps in Theorem (3.1) We arrive at 
(18). Now, reusing the inequality (19) when 𝛾 = 𝑐 ∥ 𝜃 ∥ , 𝛿 = �̂� ∥ 𝜃 ∥  and 𝑚 = 𝑏 ∥ 𝜌 ∥ +

𝑐 ∥ 𝜌 ∥  in (18), we have 

                                                ∥ 𝜃 ∥ ≤ �̃� ∥ 𝜌 ∥ +∥ 𝜌 ∥ ,                                                              (29) 

where �̃� = 𝑏/𝑐. Now, applying Ritz projection error bounds in (21) and (22) in (29) we have 

                                                    ∥ 𝜃 ∥ ≤ 𝐶 ℎ ∥𝑢 ∥ ,                                                                      (30) 

where 𝐶 = 𝐶 + �̃�𝐶 . Taking the square root gives us 

                                                       ∥ 𝜃 ∥≤ 𝐶 ℎ∥𝑢 ∥,                                                                         (31) 

where 𝐶 = 𝐶
/ . Finally, inserting (21) and (31) in (4) we have 

                                               ∥ 𝑒 ∥≤∥ 𝜌 ∥ +∥ 𝜃 ∥≤ 𝐶 ℎ∥𝑢 ∥,                                                       (32) 

where 𝐶 = 𝐶 + 𝐶 . 

2. Notice that the bound in (32) is suboptimal due to the presence of the term 𝑏∫
ℐ
 𝑒 𝜃𝑑𝑥. 

Now, to obtain an optimal error bound let 𝑏 = 0 in (17), then we have 

                                                 ∥ 𝜃 ∥≤∥ 𝜌 ∥≤ 𝐶 ℎ ∥𝑢 ∥.                                                                 (33)  

Inserting (21) and (33) in (4) leads to the bound 
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                              ∥ 𝑒 ∥≤∥ 𝜌 ∥ +∥ 𝜃 ∥≤ 2 ∥ 𝜌 ∥≤ 𝐶 ℎ ∥𝑢 ∥,                                                   (34) 

where 𝐶 = 2𝐶 . 

3. Note that we can overcome the suboptimality of the term 𝑏∫
ℐ
 𝑒 𝜃𝑑𝑥 by using 

integration by parts 

                       𝑏  
ℐ

𝑒 𝜃𝑑𝑥 = 𝑏[𝑒𝜃] − 𝑏  
ℐ

𝑒𝜃 𝑑𝑥 = −𝑏  
ℐ

𝑒𝜃 𝑑𝑥.                                         (35) 

Plugging (35) in (11) and testing it with 𝑣 = 𝜃 and after some mathematical manipulations 
we find 

                                    𝑎 ∥ 𝜃 ∥ + 𝑐 ∥ 𝜃 ∥ ≤ 𝑑 ∥ 𝜌 ∥ ,                                                             (36) 

where 𝑎 = 2𝑎 and 𝑑 = 𝑏 + 𝑐. Applying the inequality (19) in (36) when 𝛾 = 𝑐 ∥ 𝜃 ∥ , 𝛿 =

𝑎 ∥ 𝜃 ∥  and 𝑚 = 𝑑 ∥ 𝜌 ∥  yields 

                                                      ∥ 𝜃 ∥≤ �̂� ∥ 𝜌 ∥ ,                                                                  (37) 

where �̂� = (𝑑/𝑐) / . Now, inserting (21) and (38) in (4) we have 

                                ∥ 𝑒 ∥≤∥ 𝜌 ∥ +∥ 𝜃 ∥≤ 𝐶 ℎ ∥𝑢 ∥,                                                      (38) 

where 𝐶 = (1 + �̂�)𝐶 . 

4. Conclusions 
We studied the error analysis of the finite element solution of generic scalar linear second-
order ordinary BVPs in 1D. Continuous Galerkin finite element method (CGFEM) with 
piecewise linear polynomials are used for the space discretisation. Optimal order a priori error 
bounds are obtained using Ritz projection and standard tools in the 𝐻  (energy) and 𝐿  norms. 
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