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ABSTRACT 
The  graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)  with 𝑝  vertices and 𝑞 edges is called Skolem difference mean 
labeling graph if   𝑓: 𝑉(𝐺) ⟶ {1,2 … 𝑝 + 𝑞} is  an injective mapping such that induced 

bijective edge labeling  𝑓 ∗ ∶  𝐸(𝐺) ⟶ {1,2, … , 𝑞} defined by 𝑓 ∗ (𝑢𝑣) =
| ( ) ( )|

 , if 

|𝑓(𝑢) − 𝑓(𝑣)| is even otherwise 𝑓 ∗ (𝑢𝑣) = |𝑓(𝑢) − 𝑓(𝑣)| + , if |𝑓(𝑢) − 𝑓(𝑣)| is odd. 

MSC Classification:05C76 
INTRODUCTION: 
Graph labelling is an assignment of labels to edges, vertices or both. Labelling of a graph G is 
an assignment of integers either to the vertices or edges or both subject to certain conditions. 
A dynamic survey on graph labelling is regularly up dated by Gallian [2]. Graph labelling is an 
important area of research in graph theory. The Concept of Skolem mean labelling was 
introduced by V. Balaji, D.S.T. Ramesh & A. Subramanian. Skolem difference mean labelling  
was introduced by K. Murugesan and  A. Subramanian. 
BASIC DEFINITIONS 

Definition  2.1:  The  graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)  with 𝑝  vertices and 𝑞 edges is called Skolem 
difference mean labeling graph if   𝑓: 𝑉(𝐺) ⟶ {1,2 … 𝑝 + 𝑞} is  an injective mapping such that 

induced bijective edge labeling  𝑓 ∗ ∶  𝐸(𝐺) ⟶ {1,2, … , 𝑞} defined by 𝑓 ∗ (𝑢𝑣) =
| ( ) ( )|

 , 

if |𝑓(𝑢) − 𝑓(𝑣)| is even otherwise 𝑓 ∗ (𝑢𝑣) = |𝑓(𝑢) − 𝑓(𝑣)| + , if |𝑓(𝑢) − 𝑓(𝑣)| is od 

Definition 2.2: Double star 𝐾 , ,   is a tree obtained from the star 𝐾 ,  by adding a new pendant 

edge to each of the existing  𝑛 pendant vertices. 
 Definition 2.3:   Bistar is a graph obtained from a path P2 by joining the root of stars Sm and 
Sn at the terminal vertices of P2. It is denoted by Bm ,n. 
Definition 2.4: A Subdivision of a graph G is a graph that can be obtained from G by a 
Sequence of edge Subdivisions. 
Definition 2.5: A graph is a line graph of a tree if and only if it is a connected claw-free block 
graph or equivalently a connected block graph in which each cut vertex belongs to exactly two 
blocks. 
MAIN RESULT 
Theorem:1 
The subdivision bistar 𝐺 = 𝐵 , 𝑆  is Skolem Difference mean graph. 
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Proof:  

Let 𝐵 , 𝑆  graph. The order of the graph is 𝑝 = 3𝑛 + 2  and the size is 𝑞 = 3𝑛 + 1. By the 

definition of 𝐵 𝑆 ,  , the vertex set 𝑉 = {𝑢 , 𝑢 , … 𝑢 , 𝑣 , 𝑣 , … 𝑣 , 𝑤 , 𝑤 , … 𝑤 , 𝑢, 𝑣}. Let 

𝑢 , 𝑢 , … 𝑢  be the pendent vertices attaching by u and 𝑣 , 𝑣 , … 𝑣  be the pendent vertices 
attaching by v. 𝑤 , 𝑤 , … 𝑤  attaching by vi. Let u,v be the central vertices of 𝐵 , . The edge 

set 𝐸(𝐺) = {𝑒, 𝑒 , 𝑒 , 𝑒 } Where 𝑒 = (𝑢, 𝑢 ), 𝑒 = 𝑣, 𝑣 , 𝑒 = 𝑣 , 𝑤 , 𝑒 = (𝑢, 𝑣) 

Now let us define the function 𝑓: 𝑣 → {1,2, … . 𝑝 + 𝑞} as follows 
𝑉(𝐺) = {1,2, … . .6𝑛 + 3} 

𝑓(𝑢) = 1, 
𝑓(𝑢 ) = 2𝑖 + 1; 𝑖 = 1,2, … . 𝑛 

𝑓(𝑣) = 6𝑛 + 3 

𝑓 𝑣 = 2(𝑛 + 𝑗) + 1; 𝑗 = 1,2, … . 𝑛 

𝑓(𝑤 ) = 2(𝑛 + 2𝑘); 𝑘 = 1,2, … . 𝑛 
Then the edge labels are 

𝑓(𝑒) = 3𝑛 + 1 
𝑓(𝑒 ) = 3𝑛 − 𝑖 + 1; 𝑖 = 1,2, … . 𝑛 

𝑓 𝑒 = 𝑛 + 𝑗; 𝑗 = 1,2, … . 𝑛 

𝑓(𝑒 ) = 2𝑘 − 𝑗; 𝑘 = 1,2, … 𝑛; j = 1,2, , , n 
Then the above defined function f admits Skolem Difference mean labelling. Hence the graph 
[𝐵 , 𝑆 ]  is Skolem Difference mean graph. 

Example: 

The graph 𝐵 , 𝑆  is shown in fig 1. In Sub division bistar graph, the order 14 and size 13. The 

vertex labels are 𝑓(𝑢 ) = 2𝑖 + 1; 𝑖 = 1,2,3, … 𝑛 
𝑓(𝑢 ) = 3 
𝑓(𝑢 ) = 5 
𝑓(𝑢 ) = 7 
𝑓(𝑢 ) = 9 

𝑓(𝑢) = 6𝑛 + 3; 𝑓(𝑣) = 1 
𝑓(𝑢) = 27; 𝑓(𝑣) = 1 

𝑓 𝑣 = 2(𝑛 + 𝑗) + 1; 𝑗 = 1,2, … . 𝑛 

𝑓(𝑣 ) = 11 
𝑓(𝑣 ) = 13 
𝑓(𝑣 ) = 15 
𝑓(𝑣 ) = 17 

𝑓(𝑤 ) = 2(𝑛 + 2𝑘); 𝑘 = 1,2, … . 𝑛 
𝑓(𝑤 ) = 12 
𝑓(𝑤 ) = 16 
𝑓(𝑤 ) = 20 
𝑓(𝑤 ) = 24 

The edge labels are 
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𝑓(𝑒 ) = 3𝑛 − 𝑖 + 1; 𝑖 = 1,2, … . 𝑛 
𝑓(𝑒 ) = 12 
𝑓(𝑒 ) = 11 
𝑓(𝑒 ) = 10 
𝑓(𝑒 ) = 9 

𝑓(𝑒) = 3𝑛 + 1 
𝑓(𝑒) = 13 

𝑓 𝑒 = 𝑛 + 𝑗; 𝑗 = 1,2, … . 𝑛 

𝑓(𝑒 ) = 5 
𝑓(𝑒 ) = 6 
𝑓(𝑒 ) = 7 
𝑓(𝑒 ) = 8 

𝑓(𝑒 ) = 2𝑘 − 𝑗; 𝑗 = 1,2, … . 𝑛; 𝑘 = 1,2, … 𝑛 
𝑓(𝑒 ) = 1 
𝑓(𝑒 ) = 2 
𝑓(𝑒 ) = 3 
𝑓(𝑒 ) = 4 

The labels are satisfying skolem difference mean labelling 
Hence the graph 𝐵 , 𝑆  is skolem difference mean graph. 

 
                                                         Fig 1: SDML of 𝐵 , 𝑆  

 
Theorem: 2 
The graph 𝐶 ⊕ 𝐾 ,  for 𝑛 ≥ 2, The order of the graph 𝑝 = 𝑛 + 5, and size of the graph  

𝑞 = 𝑛 + 5 . By the definition of the graph 𝐶 ⊕ 𝐾 ,  be the vertex set  

𝑉 = {𝑢, 𝑢 , … 𝑢 , 𝑣 , 𝑣 , … 𝑣 } 
Where {𝑢 , 𝑢 , 𝑢 , 𝑢 , 𝑢 } be the vertex set 𝐶 , {𝑣 , 𝑣 , … 𝑣 } attaching the vertex u. The edge 
set {𝑒 , 𝑒 , … 𝑒 , 𝑒 , 𝑒 , … 𝑒 } Where 𝑒 = {𝑢, 𝑢 } for 𝑖 ≤ 5, 𝑒 = {𝑢 , 𝑢} 
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Now let us define the function 𝑓: 𝑣 → {1,2, … 𝑝 + 𝑞} as follows, 
𝑓: 𝑉(𝐺) = {1,2, … 2𝑛 + 10}, 𝑝 = 𝑛 + 5, 𝑞 = 𝑛 + 5 

Vertex label 
𝑓(𝑢) = 1 

𝑓(𝑢 ) = 𝑖 + 1; 𝑖 = 1,3 
𝑓(𝑢 ) = 8, 
𝑓(𝑢 ) = 11 

𝑓 𝑣 = 2(𝑛 + 1 + 𝑗); 𝑗 = 1,2, … 𝑛 

Edge label 

𝑓 𝑒 = 𝑛 + 1 + 𝑗; 𝑗 = 1,2, … 𝑛 

𝑓(𝑒 ) = 1, 
𝑓(𝑒 ) = 3, 
𝑓(𝑒 ) = 2, 
𝑓(𝑒 ) = 4, 
𝑓(𝑒 ) = 5, 

Then the above defined the function of f admits skolem difference mean labelling. Hence the 
graph 𝐶 ⊕ 𝐾 ,  is skolem difference mean graph. 

 
Example: 
The graph 𝐶 ⊕ 𝐾 ,  is shown in fig 2. In the order 9, and size 9. 

The vertex labels are 
𝑓(𝑢) = 1 

𝑓(𝑢 ) = 𝑖 + 1, 𝑖 = 1,3 
𝑓(𝑢 ) = 2, 𝑓(𝑢 ) = 4 

𝑓(𝑢 ) = 8, 𝑓(𝑢 ) = 11 

𝑓 𝑣 = 2(𝑛 + 1 + 𝑗); 𝑗 = 1,2,3,4 

𝑓(𝑣 ) = 12, 𝑓(𝑣 ) = 14 
𝑓(𝑣 ) = 16, 𝑓(𝑣 ) = 18 

The Edge labels 
𝑓(𝑒 ) = 1, 𝑓(𝑒 ) = 3, 𝑓(𝑒 ) = 2, 

𝑓(𝑒 ) = 4, 𝑓(𝑒 ) = 5, 
𝑓(𝑒 ) = 𝑛 + 1 + 𝑗; 𝑗 = 1,2,3,4 

𝑓(𝑒 ) = 6, 𝑓(𝑒 ) = 7, 𝑓(𝑒 ) = 8, 𝑓(𝑒 ) = 9 
The labels are satisfying skolem difference mean labelling 
Hence the graph 𝐶 ⊕ 𝐾 ,  is skolem difference mean graph. 
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                                                              Fig 2: SDML of  𝐶 ⊕ 𝐾 ,  

 
Theorem 3: 
The graph 𝑆 ⊕ 𝑃  is skolem difference mean labelling, 𝑛 ≥ 2. 
Proof: 
 Let the graph 𝑆 ⊕ 𝑃  for 𝑛 ≥ 2, The order of the graph 𝑃 = 3𝑛 + 1, and size of the graph 
𝑞 = 3𝑛. By definition of the given graph 𝑆 + 𝑃 , be the vertex set 𝑉(𝐺) =

{ 𝑢 , 𝑢 , … 𝑢 , 𝑣 , 𝑣 , … 𝑣 } 
Where {𝑢, 𝑢 , … 𝑢 } are the vertices attaching the vertex 𝑢  and {𝑣 , 𝑣 , … 𝑣 } are the vertices 
attaching by the vertices 𝑣 , 𝑣 , … 𝑣 . 
The Edge set 𝐸(𝐺) = {𝑒 , 𝑒 , … 𝑒 , 𝑒 , 𝑒 , … 𝑒 , }. Where 𝑒 = (𝑢 , 𝑢 ), 𝑒 = (𝑢 , 𝑣 )  for 

0 ≤ 𝑖 ≤ 𝑛. Define the function 𝑓: 𝑣 → {1,2, … 𝑝 + 𝑞} vertex labeled as follows: 
𝑓(𝑢 ) = 6𝑛 + 1 

𝑓(𝑢 ) = 2𝑛 + 1 − 2𝑖; 𝑖 = 1,2, … 𝑛 

𝑓(𝑣 ) = (5𝑛 + 4𝑚 − 3𝑗)

; ≡ ( )

 

𝑓(𝑣 ) = (5𝑛 + 4𝑚 + 1 − 3𝑗)

; ≡ ( )

 

Edge labelled as follows: 
𝑓(𝑒 ) = 2𝑛 + 𝑖; 𝑖 = 1,2, … 𝑛 
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𝑓 𝑒 = [ [3𝑛 + 4𝑚 − 3𝑗 + 2𝑖 − 1]]

; ≡ ( )

/2 

𝑓 𝑒 = [ [3𝑛 + 4𝑚 − 3𝑗 + 2𝑖]]

; ≡ ( )

/2 

Then the above defined the function of f admits Skolem difference mean labelling. Hence the 
graph 𝑆 ⊕ 𝑃 , is skolem difference mean graph. 
 
Example: 
The graph 𝑆 ⊕ 𝑃  is shown in fig 3. In the order 19, and size 18. 
The vertex labels are, 

𝑓(𝑢 !) = 6𝑛 + 1; 
𝑓(𝑢 ) = 37, 

𝑓(𝑢 ) = 2𝑛 + 1 − 2𝑖, 𝑖 = 1,2, … 6; 𝑛 = 6 
𝑓(𝑢 ) = 11, 𝑓(𝑢 ) = 5 
𝑓(𝑢 ) = 9, 𝑓(𝑢 ) = 3 
𝑓(𝑢 ) = 7, 𝑓(𝑢 ) = 1  

𝑓(𝑣 ) = (5𝑛 + 4𝑚 − 3𝑖)

; ≡ ( )

; 𝑚 = 2 

𝑓(𝑣 ) = 35, 𝑓(𝑣 ) = 17 
𝑓(𝑣 ) = 29, 𝑓(𝑣 ) = 11 
𝑓(𝑣 ) = 23, 𝑓(𝑣 ) = 5  

𝑓(𝑣 ) = (5𝑛 + 4𝑚 + 1 − 3𝑖)

; ≡ ( )

; 𝑚 = 2 

𝑓(𝑣 ) = 33, 𝑓(𝑣 ) = 15 
𝑓(𝑣 ) = 27, 𝑓(𝑣 ) = 9 
𝑓(𝑣 ) = 21, 𝑓(𝑣 ) = 3 

Edge labels are 
𝑓(𝑒 ) = 2𝑛 + 𝑖; 𝑖 = 1,2, … 6 

𝑓(𝑒 ) = 13, 𝑓(𝑒 ) = 14, 
𝑓(𝑒 ) = 15, 𝑓(𝑒 ) = 16, 
𝑓(𝑒 ) = 17, 𝑓(𝑒 ) = 18 

𝑓 𝑒 =
⋃ [⋃ [3𝑛 + 4𝑚 − 3𝑗 + 2𝑖 − 1]]; ≡ ( )

2
; 𝑛 = 2, 𝑚 = 2 

𝑓 𝑒 =
⋃ [⋃ [3𝑛 + 4𝑚 − 3𝑗 + 2𝑖]]; ≡ ( )

2
; 𝑛 = 6, 𝑚 = 2 

𝑓(𝑒 ) = 1, 𝑓(𝑒 ) = 3, 𝑓(𝑒 ) = 5, 𝑓(𝑒 ) = 7, 
𝑓(𝑒 ) = 2, 𝑓(𝑒 ) = 4, 𝑓(𝑒 ) = 6, 𝑓(𝑒 ) = 8, 

𝑓(𝑒 ) = 9, 𝑓(𝑒 ) = 11,  
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𝑓(𝑒 ) = 10, 𝑓(𝑒 ) = 12 
The labels are satisfying skolem difference mean labelling. 
Hence the graph 𝑆 ⊕ 𝑃 is skolem difference mean graph. 

                            
                                                   Fig 3: SDML of  𝑆 ⊕ 𝑃  
 
Theorem: 4 
The star 𝑆𝑆 ,  is a skolem difference mean labelling, 𝑛 ≥ 2. 

Proof: 
Let 𝑆𝑆 ,  be the star graph. By the definition of 𝑆𝑆 ,  the order and size are 𝑃 = 2𝑛 + 1, 𝑄 =

2𝑛. 
The vertex set is  𝑉(𝐺) = { 𝑢 , 𝑢 , … 𝑢 , 𝑣 , 𝑣 , … 𝑣 }  
Where 𝑢, 𝑢 , … 𝑢  are adjacent vertices of 𝑢  and 𝑢, 𝑢 , … 𝑢  are adjacent vertices of 
𝑣 , 𝑣 , … 𝑣 . 
The edge set 𝐸(𝐺) = { 𝑒 , 𝑒 , … 𝑒 , 𝑒 , , … 𝑒 }. 

𝑒 = {𝑢 , 𝑢 }, 𝑒 = {𝑢 , 𝑣 } 

Define the function 𝑓: 𝑉(𝐺) → {1,2, … , 𝑝 + 𝑞}. Vertex labels are: 
𝑓(𝑢 ) = 4𝑛 + 1, 

𝑓(𝑢 ) = 2𝑛 + 1 − 2𝑖; 𝑖 = 1,2, … 𝑛 
𝑓(𝑣 ) = 4𝑛 − 4𝑗 + 2; 𝑖 = 1,2, … 𝑛 

Edge labels are: 
𝑓(𝑒 ) = 𝑛 + 𝑖; 𝑖 = 1,2, … 𝑛 
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𝑓 𝑒 = 𝑛 + 𝑖 − 2𝑗 + 1; 𝑖 = 1,2, … 𝑛; 𝑗 = 1,2 … 𝑛 

Then the above function f admits Skolem difference mean labelling. Hence the graph 𝑆𝑆 ,  

accepts skolem difference mean graph. 
 
Example: 
The graph 𝑆𝑆 ,  is shown in fig.4. 

The order and size are 13 and 12. 
 The vertex labels are  

𝑓(𝑢 ) = 4𝑛 + 1 
𝑓(𝑢 ) = 25 

𝑓(𝑢 ) = 2𝑛 + 1 − 2𝑖; 𝑖 = 1,2, … 6 
𝑓(𝑢 ) = 11, 𝑓(𝑢 ) = 7, 𝑓(𝑢 ) = 3, 

𝑓(𝑢 ) = 9, (𝑢 ) = 5, 𝑓(𝑢 ) = 7. 
𝑓(𝑣 ) = 4𝑛 − 4𝑗 + 2; 𝑖 = 1,2, … 6 

𝑓(𝑣 ) = 22, 𝑓(𝑣 ) = 14, 𝑓(𝑣 ) = 6 
𝑓(𝑣 ) = 18, (𝑣 ) = 10, 𝑓(𝑣 ) = 2. 

Edge labels are 
𝑓(𝑒 ) = 𝑛 + 𝑖; 𝑖 = 1,2, … 6 

𝑓(𝑒 ) = 7, 𝑓(𝑒 ) = 9, 𝑓(𝑒 ) = 11 
𝑓(𝑒 ) = 8, (𝑒 ) = 10, 𝑓(𝑒 ) = 12. 

𝑓 𝑒 = 𝑛 + 𝑖 − 2𝑗 + 1; 𝑖 = 1,2, … 6; 𝑗 = 1,2, … 6 

𝑓(𝑒 ) = 6, 𝑓(𝑒 ) = 4, 𝑓(𝑒 ) = 2 
𝑓(𝑒 ) = 5, (𝑒 ) = 3, 𝑓(𝑒 ) = 1 

The labels are satisfying skolem difference mean labelling. 
Hence the 𝑆𝑆 ,  is skolem difference mean graph. 

 

 
 
                                                          Fig 4: SDML of  𝑆𝑆 ,  
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CONCLUSION: 
In this article the concept of   Skolem Difference Mean Labelling Of  Star  Related Graphs are  
explained.  In future different concept of labelling can also be developed. 
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