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Abstract    
         Instead of individualized one to one assistance, here we describe systems that provide 
services for group of customers. This study introduces controllable arrival rates with vacation 
and interdependency of the system's service and arrival processes. A faster and slower arrival 
rates are meant to be controllable arrivals, with Poisson (each time Poisson occurrence has one 
arrival) being the default assumption. Service begins only when the count of customers in the 
queue approaches or surpasses a and the capacity b (≥a ≥ 1). A vacation period defines when a 
server goes for performing other uninterruptible work when the system is idle. Then, all the 
steady-state equations are derived to find the system's probabilities. We used M/M(a,b)/1 as 
the notation. For this model, steady-state solutions & characteristics are derived and explored. 
All the probabilities are expressed in terms of P0,0(0). The expected number of customers and 
waiting time depends on the interdependency, service rate, faster arrival rate, and slower arrival 
rate. According to each parameter, all the results are verified. There are works related to bulk 
service and vacation, but this is a new approach to give a bridge between bulk service and 
controllable arrival rates with vacation along with interdependency in the arrival and service 
process. 
Keywords: M/M(a,b)/1 Queueing system, Bulk service, controllable arrival rates, steady 
states, interdependent model, stochastic processes, Vacation. 

1. Introduction  
         Queueing models are used in many real-world contexts as a basis for the effective design 
and study of various technological systems and for the assessment of system behaviour, 
including client waiting times and estimated numbers of consumers. Bulk service was initially 
proposed by Bailey in 1954 [1]. The literature on bulk services has grown over time. These 
ideas can be applied in a number of situations, such as the transportation sector, where batch 
servers such as mass transit vehicles, lifts, and carriers are commonplace. Queuing problems 
can arise in many real-world systems, including those for production, voice or data transport, 
communications services, etc. Over computer communication networks, messages can be 
transmitted using any number of packets. 
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          Most queuing models start serving consumers as soon as they arrive. But with bulk 
service, the client count does not begin to count until number an is reached. However, service 
won't start until after a certain number of customers. Queue theorists are now investigating the 
performance characteristics of queuing systems when the service pattern is not constrained by 
a specific distribution, as a result of the single-server bulk service models. The body of research 
on bulk service queuing theory includes studies of the characteristics and actions of the system's 
servers as well as the conduct of customers in the line [1–7].  

           Numerous academics have significantly contributed to the bulk service queueing models 
due to their widespread applications. In queueing theory, several researchers deal with different 
types of services with other parameters and various arrivals in different models. Here it is a 
combined model as bulk service with control in arrivals. In previous studies,  J. Medhi (2002) 
discussed bulk service systems [8]. Neuts M. F contributed to the idea of bulk queues in the 
literature in 1967[9]. A. Srinivasan and M. Thiagarajan (2006) researched the controllable 
arrival rates in various queueing models [10] in that study, discussing the concept of the speed 
of arrival rates in some queueing models. Various studies have been conducted on queueing 
systems to elucidate the concept of bulk service. These investigations provide a comprehensive 
understanding of queueing systems, such as k-stage bulk service, heterogeneous bulk service, 
group service for impatient customers, performance analysis of dependent bulk service queues 
with server breakdowns, multiple vacation transient behaviours of bulk service queueing 
systems with standby servers, and others [11-17]. Anyue Chen, Xiaohan Wu & Jing Zhang 
(2020) proposed "Markovian bulk-arrival and bulk-service queues with general state-
dependent control" [18]. Additionally, K. H. Rahim and M. Thiagarajan proposed an 
innovative approach to the interdependent queueing model with controllable arrival rates in a 
single-server system [19], and it is an extension of that study.Finally, the present study deals 
with controllable arrivals with vacation by dividing the faster and slower rates in the bulk 
service queuing system, and it connects or makes a bridge between the bulk service to 
controlled arrivals. This system is using the idle time for internal uninterrupted work in the 
sense of vacation. So, all the probabilities can split according to the speed of arrivals with this 
concept. This interdependent model can apply to model the real-world situation to new 
queueing models. This model has controls for both service and arrival. 

        This study made an effort to examine the M/M(a,b)/1 interdependent queueing model with 
vacation and controllable arrival rates. We defined the model and steady-state equations and 
derived model properties. We produced numerical data for system performance metrics to 
conform to the analytical conclusions and facilitate sensitivity analysis. Following is a 
summary of the queueing model research. This study describes the model and then the steady-
states, formulation, and notation. After that, it covers the properties of the models and then 
provides illustrative findings for system performance indicators to conform to the analytical 
conclusions and simplify the sensitivity analysis. 

2. Model Description 
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        This queuing system constitutes a single server and a limitless waiting space. The arrival 
and service completion process {X1(t)}and {X2(t)} of the system follow a bivariate Poisson 
process and are correlated, given that, 
P(X1(t) = x1, X2(t) = x2) 

=  𝑒 (𝜀𝑡) 𝜆 − 𝜀 𝑡 [(𝜇 − 𝜀)𝑡]
{ , }

!( )!( )!
                  (2.1) 

 where xi= 0, 1, 2,…(values of i is 1 and 2); 𝜆  > 0; j = 0,1; 𝜇 > 0; 0 ≤ 𝜀 <min (𝜆 , 𝜇); j = 0, 1. 

        The parameters 𝜇, 𝜀, 𝜆 , 𝑎𝑛𝑑 𝜆 describe 
 𝜇   = the mean service rate. 
𝜀   = the mean dependence rate ( the covariance of {X1(t)} & {X2(t)}). 
𝜆 = the mean faster arrival rate.  
𝜆  = the mean slower arrival rate. 
       FCFS is the queue discipline. Based on size [a, b], services are provided in batches. When 
the queue length reaches or surpasses a, and the capacity is b (≥a≥1), does service begin. A 
batch's service time distribution is considered exponential with parameter 𝜇. The states of the 
system are denoted by (j, n), with n is the number of units in the queue, and j = 1 indicates the 
server in this system is busy serving a batch of size m (a≥ m ≥b), and j = 0 shows idle server. 
v denotes the probability of the vacation when the system is in idle state. 
 We consider the system's states. 
Denote, Pj,n(t) = Pr[the state of the system (j, n) at t (time)]. 
             Pj,n(t) is non zero Only for j = 1, n ≥0, and j = 0; 0 ≤ n ≤a -1. 
Now, the steady-state probabilities (SSP) are as follows. 
  Let P0,n(0), describe the SSP that there are queued n customers when idle server and the system 
is at a faster arrival rate. 
  Let P0,n(1), describe the SSP that there are queued n customers when idle server and the system 
is at a slower arrival rate. 
  Let P1,n(0), describe the SSP that there are queued n customers when the busy server and 
system are at a faster arrival rate. 
  Let P1,n(1), describe the SSP that there are queued n customers when the busy server and 
system are at a slower arrival rate. 
      Clearly, the process N(t); t ⩾ 0, where N(t) is the system size at time t, is a Markov chain 
with state space 
{0,1, 2,…,f -1 f, f + 1,f+ 2,…,F -2,F -1,F,F+ 1,…} and F < a < b 

3. Steady-State Equations 
          The steady state means the states of any queuing system at the probability of the count 
of the clients in any queueing system being independent of time t. In "Fundamentals of 
queueing theory," Donald Gross and Carl M. Harris explained steady-state equations and 
illustrated them in some models [11]. Here we can see that Pj,n(0) exists only when n = 0,1, 2, 
f-1, f; Pj,n(1) exists only when n = F,  F + 1,…∞: both Pj,n(0) & Pj,n(1) exists elsewhere where  
j = 0, 1 .  
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          The steady-state equations become 
 

−(𝜆 + 𝜇 − 2𝜀)𝑃 , (0) + (𝜆 − 𝜀)𝑃 , (0) = 0 

(𝑛 = 1,2,3 … 𝑓 − 1)                 (3.1) 
−(𝜆𝑜 + 𝜇 − 2𝜀)𝑃 , (0) + (𝜆 − 𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (1) = 0                               (3.2) 

−(𝜆 + 𝜇 − 2𝜀)𝑃 , (0) + (𝜆 − 𝜀)𝑃 , (0) = 0  

                                                   (𝑛 = 𝑓 + 1, 𝑓 + 2, … , 𝐹 − 2)                                                        (3.3) 
−(𝜆 + 𝜇 − 2𝜀)𝑃 , (0) + (𝜆 − 𝜀)𝑃 , (0) = 0                                                           (3.4) 

−(𝜆 + 𝜇 − 2𝜀)𝑃 , (1) + (𝜇 − 𝜀)𝑃 , (1) = 0                                                         (3.5) 

−(𝜆 + 𝜇 − 2𝜀)𝑃 , (1) + (𝜆 − 𝜀)𝑃 , (1) + (𝜇 − 𝜀)𝑃 , (1) = 0 

                                                   (𝑛 = 𝑓 + 2, 𝑓 + 3, … 𝐹 − 1)           (3.6) 
−(𝜆 + 𝜇 − 2𝜀)𝑃 , (1) + (𝜆 − 𝜀)𝑃 , (1) + (𝜆 − 𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (1) = 0         

                                                (3.7) 
−(𝜆 − 𝜇 + 2𝜀)𝑃 , (1) + (𝜆 − 𝜀)𝑃 , (1) + (𝜇 − 𝜀)𝑃 , (1) = 0 

                                                                                     (n= F+1, F+2…)                          (3.8) 
−(𝜆 + 𝜇 − 2𝜀)𝑃 , (0) + (𝜆 − 𝜀)𝑃 , (0) = 0                                                                   (3.9) 

−(𝜆 + 𝜇 − 2𝜀)𝑃 , (1) + (𝜆 − 𝜀)𝑃 , (1) + (𝜇 − 𝜀) 𝑃 , (1) = 0                         (3.10) 

−(𝜆 − 𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (0) = 0                                                                         (3.11) 

−(𝜆 − 𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (1) = 0                                                                         (3.12) 

−(𝜆 − 𝑣 − 2𝜀)𝑃 , (0) + (𝜆 − 𝑣 − 2𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (0) = 0 

                                                                               (n= 1,2,3,…,f-1)                                (3.13) 
−(𝜆 − 𝑣 − 2𝜀)𝑃 , (0) + (𝜆 − 𝑣 − 2𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (1) = 0 

                      (3.14) 
−(𝜆 − 𝑣 − 2𝜀)𝑃 , (0) + (𝜆 − 𝑣 − 2𝜀)𝑃 , (0) + (𝜇 − 𝜀)𝑃 , (0) = 0   

                                                                     (n= f+1,f+2,…,F-2)                                             (3.15) 
−(𝜆 − 𝑣 − 2𝜀)𝑃 , (0) + (𝜆 − 𝑣 − 2𝜀)𝑃 , (0) = 0                                                               (3.16) 

−(𝜆 − 𝑣 − 2𝜀)𝑃 , (1) + (𝜇 − 𝜀)𝑃 , (0) = 0                                                                           (3.17) 

−(𝜆 − 𝑣 − 2𝜀)𝑃 , (1) + (𝜆 − 𝑣 − 2𝜀)𝑃 , (1) + (𝜇 − 𝜀)𝑃 , (1) = 0 

                                                                   (𝑛 = 𝑓 + 2, 𝑓 + 3, … , 𝐹 − 1)                                 (3.18) 
−(𝜆 − 𝑣 − 2𝜀)𝑃 , (1) + (𝜆 − 𝜀)𝑃 , (1) + (𝜆 − 𝑣 − 2𝜀)𝑃 , (0) 

+(𝜇 − 𝜀)𝑃 , (1) = 0        3.19) 

−(𝜆 − 𝑣 − 2𝜀)𝑃 , (1) + (𝜆 − 𝑣 − 2𝜀)𝑃 , (1) + (𝜇 − 𝜖)𝑃 , (1) = 0 

                                                                       (n=F+1, F+2,…,a-1)                                           (3.20) 
 
3.1 Computation Of Steady-State Solutions 
 

            Let = 𝜌 ,   = 𝜌  and  𝑣 =     
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Now, from equation (3.11) 
                                               𝑃 , (0) = 𝜌  𝑣 𝑃 , (0)                                                                   (3.2.1) 

Recursively using equation (3.1.1) in equations (3.1),(3.2),(3.3), and (3.4), we get   

𝑃 , (0) =
𝜌  𝑣

𝜌  + 1
𝑃 , (0) 

                                                                                     (n= 1,2,3,…,F-1)                                 (3.2.2) 
From equation (3.6),(3.7) and (3.8) , also by using displacement operator. 
−(𝜌 + 1)𝐸𝑃 , (1) + 𝜌 𝑃 , (1) + 𝐸 𝑃 , (1) = 0; 

                                                                                      (n=f+1,f+2,f+3…) 

Or 𝐴 𝐸𝑃 , (1) = 0 

With characteristic equation,  

𝐴(𝑧) ≡ 𝑧 − (𝜌 + 1)𝑧 + 𝜌 = 0 

Now, let 𝐴 (𝑧) = −(𝜌 + 1)𝑧  and  𝐴 (𝑧) = 𝑧 + 𝜌  
  From the circle |𝑧| = 1 − 𝜉 such that 𝜉 is arbitrarily small. Then by Rouche's theorem, the 
roots are denoted by 𝜔 , 𝜔 , 𝜔 … 𝜔    |𝜔 | ≥ 1,  

Thus  𝑃 , (1) = 𝛼𝜔 + 𝛼 𝜔  for n= 0,1,2… where 𝛼 ′𝑠 are constants.  

Again  𝑃 , (1) < 1 We must have  𝛼 = 0∀𝑖 which implies  𝑃 , (1) = 𝛼𝜔  

From equation (3.12)  

                                    𝑃 , (1) =
( )

𝑃 , (0)                                                            (3.2.3) 

Now,  

𝑃 , (1) =
𝜌

𝜔(𝜌 + 1)
𝜔 𝑃 , (0) 

                                                                                       (n= f+1,f+2,…)                                 (3.2.4) 
From equation (3.2.2) and (3.2.4) 
                                            𝑃 , = 𝑃 , (0) + 𝑃 , (1) 

                                     𝑃 , = 𝑃 , (0) + 𝑃 , (1) 

 
From equation (3.9), we have, 
                                              𝑃 , (0) = (𝜌 + 1)𝑃 , (0)                                                   (3.2.5) 

From equation (3.13) n= a-1,a-2,…,1 recursively using (3.2.5) we get,  
 

𝑃 , (0) = ( 𝑣 𝜌 + 1) 1 −
 𝑣 𝜌

( 𝑣 𝜌 + 1)
+

 𝑣 𝜌

( 𝑣 𝜌 + 1)
𝑃 , (0) 

                                                                                                (n=1,2,3,…,F-1)                       (3.2.6) 
Using equation (3.10) in (3.17), (3.18), and (3.19), we obtain,   
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𝑃 , (1) =
1

 𝑣 𝜌

 (𝑣 𝜌 )

𝜔( 𝑣 𝜌 + 1)
( 𝑣 𝜌 + 1) −

𝜔 (1 − 𝜔 )

1 − 𝜔
𝑃 , (0) 

                                                                       (𝑛 = 𝑓 + 1, 𝑓 + 2, … , 𝑎 − 1)                             (3.2.7) 
Now,          𝑃 , = 𝑃 , (0) + 𝑃 , (1) 

               𝑃 , = 𝑃 , (0)

 

+ 𝑃 , (1) 

 
We observed that every SSP of the system is defined by P0,0(0) values.   
 

3.2 The Model's Characteristics 
 

        Here expected and analytical results are derived for the system. 
 
Now,𝑃 , + 𝑃 , = 1 

𝜌  

(𝜌  𝑣 + 1)
 

+
𝜌

𝜔(𝜌 + 1)
𝜔

+ ( 𝑣 𝜌 + 1) 1 −
 𝑣 𝜌

( 𝑣 𝜌 + 1)
+

 𝑣 𝜌

( 𝑣 𝜌 + 1)

+
1

 𝑣 𝜌

 𝑣 𝜌

𝜔( 𝑣 𝜌 + 1)
( 𝑣 𝜌 + 1) −

𝜔 (1 − 𝜔 )

1 − 𝜔
 𝑃 , (0)

= 1 
                    ⇒ 𝑀𝑃 , (0)

= 1                                                                                                            (3.3.1) 
 
Where, 
         
   
 
M =  
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𝜌  

(𝜌  𝑣 + 1)
 

+
𝜌

𝜔(𝜌 + 1)
𝜔

+ ( 𝑣 𝜌 + 1) 1 −
 𝑣 𝜌

( 𝑣 𝜌 + 1)
+

𝜌

( 𝑣 𝜌 + 1)

+
1

 𝑣 𝜌

 (𝑣 𝜌 )

𝜔( 𝑣 𝜌 + 1)
( 𝑣 𝜌 + 1) −

𝜔 (1 − 𝜔 )

1 − 𝜔
  

 
Hence, 
          𝑃 , (0) = 𝑀  

 
 𝑃 (0) represents the probability that this system will have a faster arrival rate. And it is given 
by 

  𝑃 (0) = 𝑃 , (0) + 𝑃 , (0)  = 

(1 +  𝑣 𝜌 ) 1 −
 

(  )
+

 

(  )
+

 

(  )
𝑃 , (0)                                                                                                                             

       (3.3.2) 
 
     𝑃 (1) represents the probability that this system will have a slower arrival rate. And it is 
given by 
  

 𝑃 (1) = 𝑃 , (1) + 𝑃 , (1)  

=
1

 𝑣 𝜌

 (𝑣 𝜌 )

𝜔( 𝑣 𝜌 + 1)
( 𝑣 𝜌 + 1) −

𝜔 (1 − 𝜔 )

1 − 𝜔
 

+
𝜌

𝜔(𝜌 + 1)
𝜔 𝑃 , (0)                                                        (3.3.3) 

 
Now, the probability that the count of units in the system between f and a - 1 can be 
expressed as 

𝑃(𝑓 ≤ 𝑛 ≤ 𝑎 − 1) = 𝑃 , (0) + 𝑃 , (1) + 𝑃 , (0) + 𝑃 , (1) 
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𝑃(𝑓 ≤ 𝑛 ≤ 𝑎 − 1) = 𝑇𝑃 , (0)                                                                                                (3.3.4) 

Where, 

𝑇 =
𝜌  𝑣

𝜌  + 1
 

+
𝜌

𝜔(𝜌 + 1)
𝜔

+ ( 𝑣 𝜌 + 1) 1 −
 𝑣 𝜌

( 𝑣 𝜌 + 1)
+

 𝑣 𝜌

( 𝑣 𝜌 + 1)

+
1

 𝑣 𝜌

 (𝑣 𝜌 )

𝜔( 𝑣 𝜌 + 1)
( 𝑣 𝜌 + 1) −

𝜔 (1 − 𝜔 )

1 − 𝜔
  

Now, 
  Conditional probability 𝑃(0|𝑓 ≤ 𝑛 ≤ 𝑎 − 1) that this system is in a faster arrival rate when 
the size of the system lies between f and a - 1 is given by  

𝑃(0|𝑓 ≤ 𝑛 ≤ 𝑎 − 1) =
, ( ) , ( )

, ( )
                                                                (3.3.5) 

 
Now, 
  Conditional probability 𝑃(1|𝑓 ≤ 𝑛 ≤ 𝑎 − 1) that this system is in a slower arrival rate 
when the size of the system lies between f and a -1 is given by 

𝑃(1|𝑓 ≤ 𝑛 ≤ 𝑎 − 1) =
, ( ) , ( )

, ( )
                                                                  (3.3.6) 

 
     The expected count of consumers utilizing this system 𝐿  is indicated by the sum 𝐿  - The 

expected count of units or customers utilizing this system when the rate of arrivals is faster 
and 𝐿   - The expected count of units or customers utilizing this system when the rate of 

arrivals is slower. 
 
𝐿 = 𝐿 + 𝐿  

 
Where, 

𝐿 = 𝑛 𝑃 , (0) + 𝑃 , (0)              (3.3.7) 

𝐿 = 𝑛 𝑃 , (1) + 𝑃 , (1)              (3.3.8) 

   
  Now, from Little's formula to this model, the expected waiting time of the consumer 
utilizing the system can be computed by 

                                                                                 𝑤 =                                                       (3.3..9) 
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Where, �̅� = 𝜆 𝑃 , (0) + 𝑃 , (0) + 𝜆 𝑃 , (1) + 𝑃 , (1)   

 
 
4.  Numerical Illustrations 

 
           In this section, the queuing system is numerically and graphically illustrated with the 
values of  𝐿  and 𝑊  for various values of    𝜆 ,   𝜆 ,    𝜇 and 𝜀. Using the above-obtained 
equations for each value. 
Let f = 4, F = 8, a = 10 and b = 15 
 

𝝀𝟎 8 8 8 8 8 8 8 7 6 5 8 

𝝀𝟏 6 6 6 5 5 5 5 5 4 3 6 

 𝝁 10 12 14 12 12 12 12 10 10 9 9 

 𝜺 0.5 0.5 0.5 0 0.25 0.75 1 0.25 0.5 0.5 0.5 

 
𝑳𝒔 

62.00
602 

54.85
204 

50.02
303 

56.06
007 

55.74
404 

55.07
304 

54.71
309 

57.03
205 

51.54
805 

49.31
501 

66.82
208 

 
𝑾𝒔 
  

0.602
02 

0.590
33 

0.507
55 

0.600
9 

0.601
01 

0.598
3 

0.590
73 

0.680
81 

0.770
75 

0.920
14 

0.630
46 

                                                                         Table 1. 
 

 
Figure 1: Ls and Ws corresponds to service rates, є, parameters other than є are unaltered. 
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Figure 2: Ls and Ws corresponds to dependence rate, 𝛍, parameters other than 𝛍 are      
                unaltered. 

5. Conclusion  

      This study offers a new approach to managing predictable arrival rates that takes into 
account interdependencies between the arrival and service processes as well as faster and 
slower rates in bulk service. Based on faster and slower arrival rates, probabilistic outcomes 
and related features are identified, offering important information for further research. This 
model demonstrates the ability to participate in mathematical modelling of real-world 
circumstances, which could be a direction for future research. This specific model functions as 
a foundational framework for the assessment and development of similar queuing models of 
this type. The earlier iterations are included in this model as particular cases. For example, this 
model reduces to the M/M/1/K when the value of b reaches 1 with finite capacity. When 
𝜆 approaches 𝜆 and 𝑣, 𝜺 equals zero, the interdependent queueing model with controllable 
arrival rate by M. Thiagarajan and A. Srinivasan also relates to the classic M/M(a,b)/1 model 
as stated by J Medhi (2006) in Stochastic Models in Queueing Theory. The graph illustrates 
that numerically. When the service rate rises, 𝐿   and  𝑊  fall while all other parameters stay 
constant. While 𝐿   and  𝑊  remain unchanged, the average dependency rate rises. In essence, 
this research serves as a link between controlled arrival rates and bulk services 
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